

Learning PHP, MySQL &
JavaScript

SEVENTH EDITION

A Step-by-Step Guide to Creating Dynamic
Websites

Robin Nixon

Learning PHP, MySQL & JavaScript
by Robin Nixon

Copyright © 2025 Robin Nixon. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for
most titles (http://oreilly.com). For more information, contact
our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editors: Amanda Quinn & Louise
Corrigan

Development Editors: Rita Fernando & Michele
Cronin

Production Editor: Elizabeth Faerm

Copyeditor: Piper Editorial Consulting, LLC

Proofreader: Kim Cofer

Indexer: Sue Klefstad

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

January 2025: Seventh Edition

http://oreilly.com/

Revision History for the Seventh Edition

2025-01-10: First Release

See oreilly.com/catalog/errata.csp?isbn=0636920912620 for
release details.

The O’Reilly logo is a registered trademark of O’Reilly
Media, Inc. Learning PHP, MySQL & JavaScript, the cover
image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author, and
do not represent the publisher’s views. While the publisher
and the author have used good faith efforts to ensure that the
information and instructions contained in this work are
accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-098-15235-2

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=0636920912620

Dedication
This book is dedicated to all the readers who have contributed
ideas, suggestions, errata, and otherwise generally helped keep
its contents fresh and relevant throughout seven editions since
2009. I salute your dedication to PHP and the associated
technologies covered in this book—please always keep your
feedback coming.

Preface

The combination of PHP and MySQL is the most convenient
approach to dynamic, database-driven web design, holding its
own in the face of challenges from some other integrated
frameworks that are harder to learn. Due to its open source
roots, it is free to implement and is therefore an extremely
popular option for web development.

Any would-be developer on a Unix/Linux or even a Windows
platform will need to master these technologies. And,
combined with the partner technologies of JavaScript, React,
CSS, and HTML5, you will be able to create websites of the
caliber of industry standards like Facebook, Reddit, TikTok,
and Gmail.

Audience
This book is for people who wish to learn how to create
effective and dynamic websites. This may include webmasters
or graphic designers who have already mastered creating static
websites, or a CMS such as WordPress but wish to take their
skills to the next level, as well as high school and college
students, recent graduates, and self-taught individuals.

In fact, anyone ready to learn the fundamentals behind
responsive web design will obtain a thorough grounding in the
core technologies of PHP, MySQL, JavaScript, CSS, and
HTML5, and you’ll learn the basics of the React library and
how to use Node.js to support backend development using
JavaScript.

Assumptions This Book Makes
This book assumes that you have a basic understanding of
HTML and can at least put together a simple, static website
but does not assume that you have any prior knowledge of
PHP, MySQL, JavaScript, and CSS—although if you do, your
progress through the book will be even quicker.

Organization of This Book
The chapters in this book are written in a specific order, first
introducing all of the core technologies it covers and then
walking you through their installation on a web development
server so that you will be ready to work through the examples.

In the first section, you will gain a grounding in the PHP
programming language, covering the basics of syntax, arrays,
functions, and object-oriented programming.

Then, with PHP under your belt, you will move on to an
introduction to the MySQL database system, where you will
learn everything from how MySQL databases are structured to
how to generate complex queries.

After that, you will learn how you can combine PHP and
MySQL to start creating your own dynamic web pages by
integrating forms and other HTML features. You will then get
down to the nitty-gritty practical aspects of PHP and MySQL
development by learning a variety of useful functions and how
to manage cookies and sessions, as well as how to maintain a
high level of security.

In the next few chapters, you will gain a thorough grounding
in JavaScript, from simple functions and event handling to
accessing the Document Object Model, in-browser validation,
and error handling. You’ll also get a comprehensive primer on
using the popular React library for JavaScript.

With an understanding of all three of these core technologies,
you will then learn how to make behind-the-scenes Ajax calls

and turn your websites into highly dynamic environments.

Next, you’ll learn all about using CSS to dynamically style
and lay out your web pages, before discovering how the React
libraries can make your development job a great deal easier,
and how you can use Node.js instead of PHP and the Apache
web server to write your backend code in JavaScript. Finally
you’ll put together everything you’ve learned in a complete set
of programs that together constitute a fully functional social
networking website.

Along the way, you’ll find plenty of advice on good
programming practices and tips that can help you find and
solve hard-to-detect programming errors. There are also plenty
of links to websites containing further details on the topics
covered.

Conventions Used in This Book
The following typographical conventions are used in this
book:

Plain text

Indicates menu titles, options, and buttons.

Italic

Indicates new terms, URLs, email addresses, filenames,

file extensions, pathnames, directories, and Unix utilities.

Also used for database, table, and column names.

Constant width

Indicates commands and command-line options, variables

and other code elements, HTML tags, the contents of files,

as well as user input.

Constant width bold

Shows program output and is used to highlight sections of

code that are discussed in the text.

Constant width italic

Shows text that should be replaced with user-supplied

values.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
A range of supplementary material is available online (along
with all the examples from the book) in a GitHub repository,
comprising the following extra chapters in PDF format:

Supplemental Chapter 1, “Introduction to CSS”

Supplemental Chapter 2, “Introduction to jQuery”

Supplemental Chapter 3, “Introduction to jQuery
Mobile”

Supplemental Chapter 4, “Introduction to HTML5”

Supplemental Chapter 5, “The HTML5 Canvas”

Supplemental Chapter 6, “HTML5 Audio and Video”

Supplemental Chapter 7, “Other HTML5 Features”

Supplemental Chapter 8, “What’s New in PHP 8 and
MySQL 8”

If you have a technical question or a problem using the code
examples, please send email to support@oreilly.com.

https://github.com/RobinNixon/lpmj7
https://oreil.ly/H9YTV
https://oreil.ly/bfjgQ
https://oreil.ly/OAZ65
https://oreil.ly/kFP8K
https://oreil.ly/Dwr0y
https://oreil.ly/LWijz
https://oreil.ly/fDzNZ
https://oreil.ly/wR_XH
mailto:support@oreilly.com

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission.
Incorporating a significant amount of example code from this
book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Learning PHP, MySQL & JavaScript, 7th

Edition by Robin Nixon (O’Reilly). Copyright 2025 Robin
Nixon, 978-1-098-15235-2.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning
NOTE

For more than 40 years, O’Reilly Media has provided technology and
business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata,
examples, and any additional information. You can access this
page at https://oreil.ly/learning-php-mysql-js-7e.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-
media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
I would like to thank Senior Content Acquisitions Editor
Amanda Quinn, Content Development Editors Rita Fernando
and Michele Cronin, and everyone who worked so hard on this
book, including Michal Špaček and David Mackey for their

mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/learning-php-mysql-js-7e
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

comprehensive technical reviews, Michal Špaček for his
excellent help during production, Elizabeth Faerm for
overseeing production, Beth Richards for copy editing, Kim
Cofer for proofreading, Sue Klefstad for creating the index,
Karen Montgomery for the original sugar glider front cover
design, Susan Brown for the latest book cover, my original
editor, Andy Oram, for overseeing the first five editions, and
everyone else too numerous to name who submitted errata and
offered suggestions for this new edition.

Chapter 1. Introduction to
Dynamic Web Content

The World Wide Web is a constantly evolving network that
has already traveled far beyond its conception in the early
1990s, when it was created to solve a specific problem. State-
of-the-art experiments at CERN (the European Laboratory for
Particle Physics, now best known as the operator of the Large
Hadron Collider) were producing incredible amounts of data—
so much that the data was proving unwieldy to distribute to the
participating scientists, who were spread out across the world.

At this time, the internet was already in place, connecting
several hundred thousand computers, so Tim Berners-Lee (a
CERN fellow) devised a method of navigating between them
using a hyperlinking framework, which came to be known as
Hypertext Transfer Protocol, or HTTP. He also created a
markup language called Hypertext Markup Language, or
HTML. To bring these together, he wrote the first web browser
and web server.

THE ADVENT OF WEB 1.0
Web 1.0 was given its name only when the term Web 2.0 was
coined. During the 1.0 era, most users were content consumers, and
although there were some personal web pages, there were no social
networks. Guestbooks were used instead of comment sections. Some
sites had already used databases but server resources and bandwidth
were very limited. Navigation and layout in Web 1.0 was managed
with simple buttons and graphics, while interaction was very limited.

Today we take these simple tools for granted, but back then,
the concept was revolutionary. The most connectivity
experienced by at-home modem users at that time was dialing
up and connecting to a bulletin board where you could
communicate and swap data only with other users of that
service. Consequently, you needed to be a member of many

bulletin board systems in order to effectively communicate
electronically with your colleagues and friends.

But Berners-Lee changed all that in one fell swoop, and by the
mid-1990s, three major graphical web browsers were
competing for the attention of five million users. It soon
became obvious, though, that something was missing. Yes,
pages of text and graphics with hyperlinks to take you to other
pages was a brilliant concept, but the results didn’t reflect the
instantaneous potential of computers and the internet to meet
the particular needs of each user with dynamically changing
content. Using the web was a very dry, plain experience, even
if we did have scrolling text and animated GIFs!

Shopping carts, search engines, and social networks have
clearly altered how we use the web. In this chapter, we’ll look
briefly at the various components that make up the web and
the software that helps make using it a rich, dynamic
experience.

NOTE
It is necessary to start using some acronyms more or less right away. I
have tried to clearly explain them before proceeding, but don’t worry
too much about what they stand for or what these names mean,
because the details will become clear as you read on.

HTTP and HTML: Berners-Lee’s
Basics
HTTP is a communication standard governing the requests and
responses that are sent between the browser running on the
end user’s computer and the web server. The server’s job is to
accept a request from the client and attempt to reply to it in a
meaningful way, usually by serving up a requested web page
—that’s why the term server is used. The natural counterpart
to a server is a client, so that term is applied both to the web
browser and the computer on which it’s running.

Between the client and the server there can be several other
devices, such as routers, proxies, gateways, and so on. They
serve different roles in ensuring that the requests and
responses are correctly transferred between the client and
server. Typically, they use the internet to send this information.
Some of these in-between devices can also help speed up the
internet by storing pages or information locally in what is
called a cache and then serving this content up to clients
directly from the cache rather than fetching it all the way from
the source server.

A web server can usually handle multiple simultaneous
connections, and when not communicating with a client, it
spends its time listening for an incoming connection. When
one arrives, the server sends back a response.

The Request/Response Procedure
At its most basic level, the request/response process consists
of a web browser or other client asking the web server to send
it a web page and the server sending back the page. The
browser then takes care of displaying or rendering the page
(see Figure 1-1).

Figure 1-1. The basic client/server request/response sequence

The steps in the request and response sequence are:

1. You enter http://server.com into your browser’s
address bar.

2. Your browser looks up the Internet Protocol (IP)
address for server.com.

3. Your browser issues a request for the home page at
server.com.

4. The request crosses the internet and arrives at the
server.com web server.

5. The web server, having received the request, looks for
the web page on its disk.

6. The web server retrieves the page and returns it to the
browser.

7. Your browser displays the web page.

For an average web page, this process also takes place once
for each object within the page such as a graphic, an
embedded video, or a CSS stylesheet.

In step 2, notice that the browser looks up the IP address of
server.com. Every machine attached to the internet has an IP
address—your computer included—but we generally access
web servers by name, such as google.com. The browser
consults an additional internet service called the Domain
Name System (DNS) to find the server’s associated IP address
and then uses it to communicate with the computer.

For dynamic web pages, the procedure is a little more
involved, because it may bring both PHP and MySQL into the
mix. For instance, you may click a picture of a raincoat. Then
PHP will put together a request using the standard database
language, SQL—many of whose commands you will learn in
this book—and send the request to the MySQL server. The
MySQL server will return information about the raincoat you
selected, and the PHP code will wrap it all up in some HTML,
which the server will send to your browser (see Figure 1-2).

Figure 1-2. A dynamic client/server request/response sequence

The steps in the dynamic sequence are:

1. You enter http://server.com into your browser’s
address bar.

2. Your browser looks up the IP address for server.com.

3. Your browser issues a request to that address for the
web server’s home page.

4. The request crosses the internet and arrives at the
server.com web server.

5. The web server, having received the request, fetches
the home page from its hard disk.

6. With the home page now in memory, the web server
notices that it is a file incorporating PHP scripting and
passes the page to the PHP interpreter.

7. The PHP interpreter executes the PHP code.

8. Some of the PHP contains SQL statements, which the
PHP interpreter now passes to the MySQL database
engine.

9. The MySQL database returns the results of the
statements to the PHP interpreter.

10. The PHP interpreter returns the results of the
executed PHP code, along with the results from the
MySQL database, to the web server.

11. The web server returns the page to the requesting
client, which displays it.

Although it’s helpful to be aware of this process so that you
know how the three elements work together, in practice you
don’t really need to concern yourself with these details,
because they all happen automatically.

The HTML pages returned to the browser in each example
may contain JavaScript, which will be interpreted locally by
the client, and which could initiate another request.

The Benefits of PHP, MySQL,
JavaScript, CSS, and HTML
At the start of this chapter, I introduced the world of Web 1.0,
but it wasn’t long before the rush was on to create Web 1.1,
with the development of such browser enhancements as Java,
JavaScript, Flash, and ActiveX. On the server side, progress
was being made on the Common Gateway Interface (CGI)
using scripting languages such as Perl (an alternative to the
PHP language) and server-side scripting—inserting the
contents of one file (or the output of running a local program)
into another one dynamically.

Once the dust had settled, three main technologies stood head
and shoulders above the others. Although Perl was still a

popular scripting language with a strong following, PHP’s
simplicity and built-in links to the MySQL database program
had earned it more than double the number of users. And
JavaScript, which had become an essential part of the equation
for dynamically manipulating HTML, now took on the even
more muscular task of handling the client side of
asynchronous communication (exchanging data between a
client and server after a web page has loaded). Using
asynchronous communication, web pages perform data
handling and send requests to web servers in the background
—without the web user being aware that this is going on.

No doubt the symbiotic nature and the open source licenses of
PHP and MySQL helped propel them both forward, but what
attracted developers to them in the first place? The simple
answer is the ease with which you can use them to quickly
create dynamic elements on websites. MySQL is a fast and
powerful yet easy-to-use database system that offers just about
anything a website would need to find and serve up data to
browsers.

And when you bring JavaScript and CSS into the mix, you
have a recipe for building highly dynamic and interactive
websites—especially as there is now a wide range of
sophisticated frameworks of JavaScript functions you can call
on to speed up web development. These include the well-
known jQuery, which until recently was one of the most
common ways programmers accessed asynchronous
communication features.

The more recent React JavaScript library has also been
growing quickly in popularity, and is now one of the most
widely downloaded and implemented frameworks, so much so
that at the time of writing the Indeed job site lists many more
positions for React developers than for jQuery.

React provides state-of-the-art functionality for building
complex UI interactions that communicate with the server in
real time with JavaScript-driven pages. It lets you create

components that are the building blocks of the React
application.

A React component can be anything in your web application.
It can be as simple as a Button, Text, Label, or Grid, or even as
complex as a Login widget or a popup modal with control
buttons. React also supports server rendering of its
components using tools like Next.js. You can even use React
in your existing apps (it was designed with this in mind). You
can change a small part of your existing application by using
React, and if that change works, then you can start converting
your whole application over to React.js. However, other
frameworks such as Vue.js may be more suitable for this sort
of iterative implementation.

MariaDB: The MySQL Clone
After Oracle (the database management
corporation) purchased Sun Microsystems (the owners of
MySQL), the community became wary that MySQL might not
remain fully open source, so MariaDB was forked from it to
keep it free under the GNU GPL, the software license that
guarantees users the freedom to run, study, share, and modify
the software. Development of MariaDB is led by some of the
original developers of MySQL, and it retains exceedingly
close compatibility with MySQL. Therefore, you may well
encounter MariaDB on some servers in place of MySQL—but
not to worry, everything in this book works equally well on
both MySQL and MariaDB. For all intents and purposes, you
can swap one with the other and notice no difference.

Fortunately, many of the initial fears appear to have been
allayed as MySQL remains open source, with Oracle simply
charging for support and for editions that provide additional
features such as geo-replication and automatic scaling.
However, unlike MariaDB, MySQL is no longer community
driven, so knowing that MariaDB will always be there if

https://oreil.ly/iyLLS
https://nextjs.org/

needed will reassure many developers and likely ensure that
MySQL itself will remain open source.

Using PHP
With PHP, it’s a simple matter to embed dynamic activity in
web pages. When you give pages the .php extension, they have
instant access to the scripting language. From a developer’s
point of view, all you have to do is write code such as:

<?php

 echo "Today is " . date("l") . ". ";

?>

Here's the latest news.

The opening <?php tells the web server to allow the PHP
program to interpret all of the following code up to the ?> tag.
Outside of this construct, everything is sent to the client as
direct HTML. So, the text Here's the latest news. is
simply output to the browser; within the PHP tags, the built-in
date function displays the current day of the week according
to the server’s system time.

The final output of the two parts looks like this:

Today is Wednesday. Here's the latest news.

PHP is a flexible language, and some people prefer to place
the PHP construct directly next to PHP code, like this:

Today is <?php echo date("l"); ?>. Here's the latest news.

There are even more ways of formatting and outputting
information, which I’ll explain in the chapters on PHP. The
point is that with PHP, web developers have a scripting
language that, although not as fast as compiling your code in C
or a similar language, is incredibly speedy and also integrates
seamlessly with HTML markup.

NOTE
If you intend to enter the PHP examples in this book into a program
editor to follow along with me, you must remember to add <?php in
front and ?> after them to ensure that the PHP interpreter processes
them. To facilitate this, you may wish to prepare a file called
example.php with those tags in place.

Using PHP, you have unlimited control over your web server.
Whether you need to modify HTML on the fly, process a
credit card, add user details to a database, or fetch information
from a third-party website, you can do it all from within the
same PHP files in which the HTML itself resides.

Using MySQL
Of course, there’s not much point in being able to change
HTML output dynamically unless you also have a means to
track the information users provide to your website as they use
it. In the early days of the web, many sites used “flat” text files
to store data such as usernames and passwords. But this
approach could cause problems if the file wasn’t correctly
locked against corruption from multiple simultaneous
accesses. Also, a flat file can get only so big before it becomes
unwieldy to manage—not to mention the difficulty of trying to
merge files and perform complex searches in a reasonable
time.

That’s where relational databases with structured querying
become essential. And MySQL, being free to use and installed
on vast numbers of internet web servers, rises superbly to the
occasion. It is a robust, exceptionally fast database
management system that uses English-like commands.

The highest level of MySQL structure is a database, within
which you can have one or more tables that contain your data.
This is similar to let’s say an Excel spreadsheet file that
consists of multiple sheets: the spreadsheet file can be viewed
as a database and the individual sheets as tables.

Let’s suppose you are working on a table called users, within
which you have created columns for surname, firstname, and
email, and you now wish to add another user. One command
you might use to do this is:

INSERT INTO users VALUES('Smith', 'John', 'jsmith@mysite.com');

You will previously have issued other commands to create the
database and table and to set up all the correct fields, but the
SQL INSERT command here shows how simple it can be to
add new data to a database.

It’s equally easy to look up data. Let’s assume that you have a
user’s email address and need to look up that person’s name.
To do this, you could issue a MySQL query such as:

SELECT surname,firstname FROM users WHERE

email='jsmith@mysite.com';

MySQL will then return Smith, John and any other pairs of
names associated with that email address in the database.

As you’d expect, there’s quite a bit more that you can do with
MySQL than just simple INSERT and SELECT commands. For
example, you can combine related data sets to bring related
pieces of information together, ask for results in a variety of
orders, make partial matches when you know only part of the
string that you are searching for, return only the nth result, and
a lot more.

Using PHP, you can make all these calls to MySQL without
having to directly access the MySQL command-line interface.
This means you can save the results in arrays for processing
and perform multiple lookups, each dependent on the results
returned from earlier ones, to drill down to the item of data
you need.

For even more power, as you’ll see later, additional functions
are built right into MySQL so you can call up to efficiently run

common operations within MySQL, rather than creating them
out of multiple PHP calls to MySQL.

Using JavaScript
JavaScript was created to enable scripting access to all the
elements of an HTML document. In other words, it provides a
means for dynamic user interaction such as checking email
address validity in input forms and displaying prompts such as
“Did you really mean that?” (although it cannot be relied upon
for security, which should always be performed on the web
server).

Combined with CSS (see “Using CSS”), JavaScript is the
power behind dynamic web pages that change in front of your
eyes rather than when a new page is returned by the server.

However, JavaScript used to be tricky to use, due to the way
the language was initially designed and to some major
differences in how different browsers have chosen to
implement it. This came about when some manufacturers tried
to put additional functionality into their browsers at the
expense of compatibility with their rivals.

Thankfully, the language evolves, and the browser developers
have mostly come to their senses, realizing the need for full
compatibility with one another, so it is less necessary these
days to have to optimize your code for different browsers.

For now, let’s look at how to use basic JavaScript, accepted by
all browsers:

<script>

 document.write("Today is " + Date());

</script>

This code snippet tells the web browser to interpret everything
within the <script> tags as JavaScript, which the browser
does by writing the text Today is to the current document,

along with the date, using the JavaScript function Date. The
result will look something like this:

Today is Wed Jan 01 2025 01:23:45

WALKING BEFORE RUNNING
The document.write function is deliberately being used here in the
way it was originally intended, for the sake of simplicity in very small
code snippets. However, there are better ways to write into web pages
and for issuing feedback while debugging, all of which will be
revealed at the right times in this book, as well as explanations for
when and why the other options will work better for you.

As previously mentioned, JavaScript was originally developed
to offer dynamic control over the various elements within an
HTML document, and that is still its main use. But
increasingly, JavaScript is being used as the primary language
for web application development, with features such as Ajax,
the process of accessing the web server in the background.

Asynchronous communication allows web pages to begin to
resemble standalone programs, because they don’t have to be
reloaded in their entirety to display new content. Instead, an
asynchronous call can pull in and update a single element on a
web page, such as changing your photograph on a social
networking site or replacing a button that you click with the
answer to a question. This subject is fully covered in
Chapter 17.

Using CSS
CSS is the crucial companion to HTML, ensuring that the
HTML text and embedded images are laid out consistently and
appropriately for the user’s screen. With the emergence of the
CSS3 standard in recent years, CSS now offers a level of
dynamic interactivity previously supported only by JavaScript.
For example, not only can you style any HTML element to
change its dimensions, colors, borders, spacing, and so on, but

now you can also add animated transitions and transformations
to your web pages, using only a few lines of CSS.

By the way, the numbering standard for CSS releases (such as
CSS2 or CSS3) has now been dropped, so Cascading Style
Sheets are now referred to as simply CSS, but various
submodules have their own numbering such as CSS Selectors
Level 4 and CSS Images Level 3.

Using CSS can be as simple as inserting a few rules between
<style> and </style> tags in the head of a web page, like
this:

<style>

 p {

 text-align:justify;

 font-family:Helvetica;

 }

</style>

These rules change the default text alignment of the <p> tag so
that paragraphs contained in it are justified, the content exactly
fills the box, and paragraphs use the Helvetica font.

The many different ways you can lay out CSS rules are
discussed in Supplemental Chapter 1, “Introduction to CSS”,
and you can also include them directly within tags or save a
set of rules to an external file to be loaded in separately. This
flexibility not only lets you style your HTML precisely but can
also (for example) provide built-in hover functionality to
animate objects as the mouse passes over them. You will also
learn how to access all of an element’s CSS properties from
JavaScript as well as HTML.

In the main body of the book you’ll also learn all the new,
more advanced features that come with CSS, such as borders,
shadows, text effects, transitions, transformations, and the
tremendous power of the flexbox and CSS Grid technologies.

And Then There’s HTML5

https://oreil.ly/H9YTV

As useful as all these additions to the web standards became,
they were not enough for ever-more ambitious developers. For
example, there was still no simple way to manipulate graphics
in a web browser without resorting to plug-ins such as Flash
(which is now no longer supported or widely used). And the
same went for inserting audio and video into web pages. Plus,
several annoying inconsistencies had crept into HTML during
its evolution.

To clear all this up and take the internet beyond Web 2.0 and
into its next iteration, a new standard for HTML was created
to address all these shortcomings: HTML5. Its development
began as long ago as 2004, when the first draft was drawn up
by the Mozilla Foundation and Opera Software, developers of
two popular web browsers. Today, the HTML5 standard is
maintained by WHATWG (Web Hypertext Application
Technology Working Group) and is officially called HTML
Living Standard.

It’s a never-ending cycle of development, though, and more
functionality is sure to be built into it over time. Some of the
best features in HTML5 for handling and displaying media
include the <audio>, <video>, and <canvas> elements, which
add sound, video, and advanced graphics. Everything you need
to know about these and all other aspects of HTML5 is
covered in detail starting in the PDF of Supplemental Chapter
4, “Introduction to HTML5”, available in the book’s GitHub
repository.

https://oreil.ly/kFP8K
https://github.com/RobinNixon/lpmj7

NOTE
One of the little things I like about the HTML5 specification is that
XHTML syntax is no longer required for self-closing elements. In the
past, you could display a line break using the
 element. Then, to
ensure future compatibility with XHTML (the planned replacement for
HTML that never happened), this was changed to
, in which a
closing / character was added (since all elements were expected to
include a closing tag featuring this character). But now things have
gone full circle, and you can use either version of these types of
elements. In this book I have reverted to the former style of
,
<hr>, and so on, as this is also what the HTML standard now
recommends. Do note, however, that frameworks such as React use an
extension to JavaScript called JSX, which does require the
preceding / character, and where such examples occur in this book,
the preceding / is used.

The Apache Web Server
In addition to PHP, MySQL, JavaScript, CSS, and HTML,
there’s a sixth hero in the dynamic web: the web server. For
this book, that means the Apache web server. We’ve discussed
a little of what a web server does during the HTTP
server/client exchange, but it does much more behind the
scenes.

For example, Apache doesn’t serve up just HTML files—it
handles a wide range of files, from images to MP3 audio files,
RSS (Really Simple Syndication) feeds, and so on. And these
objects don’t have to be static files such as GIF images. They
can all be generated by programs such as PHP scripts. That’s
right: PHP can even create images and other files for you,
either on the fly or in advance to serve up later.

To do this, you normally have modules either precompiled into
Apache or PHP or called up at runtime. One such module is
the GD (Graphics Draw) library, which PHP uses to create and
handle graphics.

Apache also supports a huge range of modules of its own. In
addition to the PHP module, the most important for your
purposes as a web programmer are the modules that handle

security. Other examples are the Rewrite module, which
enables the web server to handle a range of URL types and
rewrite them to its own internal requirements, and the Proxy
module, which you can use to serve up often-requested pages
from a cache to ease the load on the server.

Later in the book, you’ll see how to use some of these modules
to enhance the features provided by the three core
technologies.

Node.js: An Alternative to Apache
In 2009 developer Ryan Dahl was dissatisfied with Apache
and its difficulties with handling large numbers of concurrent
connections, and came up with a solution he called Node.js,
which uses Google’s V8 JavaScript engine to allow developers
to use JavaScript for server-side scripting. Shortly after, a
package manager was introduced for the Node.js environment
called npm, which made it easier for programmers to publish
and share source code of Node.js packages, simplifying
installation, updating, and uninstallation of packages.

As of 2024 Node.js has reached version 22.6.0 and has
become a fully mainstream alternative to the Apache web
server. This book’s new edition would be remiss to not detail
its benefits and provide enough information to get you up and
running with it, if you choose. You might make that choice, for
the three reasons discussed next.

Node.js uses an event-driven, nonblocking I/O model,
allowing it to handle a large number of concurrent connections
efficiently. This nonblocking nature enables scalable and high-
performance applications, making it ideal for building real-
time web applications, chat applications, and streaming
services, for example.

It allows developers to use JavaScript on both the frontend and
backend, making it a full-stack development environment.
This eliminates the need to switch between different

programming languages, enabling better code reusability and
streamlining the development process. Yes, that means you
won’t have to keep up-to-date with PHP if you make the
switch, and indeed Node.js will not be able to run your PHP
scripts. However, a rather complex app can still use both
Node.js and Apache with PHP each for different parts or tasks.

Being built on the V8 JavaScript engine, Node.js provides
exceptional performance, executing JavaScript code quickly
and efficiently, resulting in faster response times and improved
overall application performance. Additionally, Node.js has a
small memory footprint, making it resource efficient and
suitable for deploying on cloud platforms.

As you will learn, there are many other solid reasons for using
Node.js, but just these few are already highly persuasive. PHP
remains a very important language prevalent across the
internet, is actively developed, has active communities and is
often used together with other languages and environments
such as Node.js.

About Open Source
The technologies in this book are open source: anyone is
allowed to read and change the code. Whether this status is the
reason these technologies are so popular has often been
debated, but PHP, MySQL, and Apache are the three most
commonly used tools in their categories. What can be said
definitively, though, is that their being open source means that
they have been developed in the community by teams of
programmers writing the features they themselves want and
need, with the original code available for all to see and change.
Bugs can be found quickly, and security breaches can be
prevented before they happen.

There’s another benefit: all of these programs are usually free
to use, although it depends on the particular license. There’s
no worry about having to purchase additional licenses if you

have to scale up your website and add more servers, and you
don’t need to check the budget before deciding whether to
upgrade to the latest versions of these products.

Bringing It All Together
The real beauty of PHP, MySQL, JavaScript, CSS, and HTML
is the wonderful way they all work together to produce
dynamic web content: PHP handles all the main work on the
web server, MySQL manages all the data, and the combination
of CSS and JavaScript looks after web page presentation.
JavaScript can also talk with your PHP code on the web server
whenever it needs to update something (either on the server or
on the web page). And with powerful HTML features like the
canvas, audio and video, and geolocation, you can make your
web pages highly dynamic, interactive, and multimedia-
packed.

Without using program code, let’s summarize the contents of
this chapter by looking at the process of combining some of
these technologies into an everyday asynchronous
communication feature that many websites use: checking
whether a desired username already exists on the site when a
user is signing up for a new account. A good example of this
can be seen with Gmail (see Figure 1-3).

Figure 1-3. Gmail uses asynchronous communication to check the availability of
usernames

The steps involved in this asynchronous process will be
similar to these:

1. The server outputs the HTML to create the web form,
which asks for the necessary details, such as
username, first name, last name, and email address.

2. At the same time, the server attaches some JavaScript
to the HTML to monitor the username input box and
check for two things: whether some text has been
typed into it, and whether the input has been
deselected because the user has clicked another input
box or tabbed away.

3. Once the text has been entered and the field
deselected, in the background the JavaScript code
passes the username that was entered back to a
software on the web server and awaits a response.

4. The web server looks up the username and replies to
the JavaScript about whether that name has been

taken.

5. The JavaScript then places an indication next to the
username input box to show whether the name is
available to the user—perhaps a green checkmark or a
red cross graphic, along with some text.

6. If the username is not available and the user still
submits the form, the JavaScript interrupts the
submission and reemphasizes (perhaps with a larger
graphic and/or an alert box) that the user needs to
choose another username.

7. Optionally, an improved version of this process could
look at the username requested by the user and
suggest an alternative that is currently available.

All of this takes place quietly in the background and makes for
a comfortable and seamless user experience. Without
asynchronous communication, the entire form would have to
be submitted to the server, which would then send back
HTML, highlighting any mistakes. It would be a workable
solution but nowhere near as tidy or pleasurable as on-the-fly
form field processing.

Asynchronous communication can be used for a lot more than
simple input verification and processing, though; we’ll explore
many additional things that you can do with it later in this
book.

In this chapter, you have read an introduction to the core
technologies of PHP, MySQL, JavaScript, CSS, and HTML (as
well as Apache) and have learned how they work together. In
Chapter 2, we’ll look at how you can install your own web
development server on which to practice everything that you
will be learning. Now, as in all this book’s chapters, I
recommend you see whether you can answer the following
questions to check that you have absorbed its contents.

Questions
1. What four components (at the minimum) are needed

to create a fully dynamic web page?

2. What does HTML stand for?

3. Why does the name MySQL contain the letters SQL?

4. PHP and JavaScript are both programming languages
that generate dynamic results for web pages. What is
their main difference, and why would you use both?

5. What does CSS stand for?

6. List three major new elements introduced in HTML5.

7. If you encounter a bug (which is rare) in one of the
open source tools, how do you think you could get it
fixed?

8. Why is a framework such as jQuery or React so
important for developing modern websites and web
apps?

9. Why is the event-driven model of Node.js superior to
the Apache web server?

See “Chapter 1 Answers” in the Appendix A for the answers to
these questions.

Chapter 2. Setting Up a
Development Server

If you wish to develop internet applications but don’t have
your own development server, you will have to upload every
modification you make to a server somewhere else on the web
before you can test it.

Even on a fast broadband connection, this can represent a
significant slowdown in development time. On a local
computer, however, testing can be as easy as saving an update
(usually just a matter of clicking once on an icon) and then
hitting the Refresh button in your browser.

Another advantage of a development server is that you don’t
have to worry about embarrassing errors or security problems
while you’re writing and testing, whereas you need to be
aware of what people may see or do with your application
when it’s on a public website. It’s best to iron everything out
while you’re still on a home or small office system,
presumably protected by firewalls and other safeguards.

Once you have your own development server, you’ll wonder
how you ever managed without one, and it’s easy to set one
up. Just follow the steps in the following sections, using the
appropriate instructions for a PC, a Mac, or a Linux system.

In this chapter, we cover just the server side of the web
experience, as described in Chapter 1. But to test the results of
your work—particularly when we start using JavaScript, CSS,
and HTML later in this book—you should ideally have an
instance of every major web browser running on some system
convenient to you. Sometimes, testing on two different
browsers may be sufficient but whenever possible, the list of

browsers should include at least Mozilla Firefox, Safari, and
Google Chrome.

Even though there are multiple other browsers based on the
Google Chromium browser there may still be minor
differences in their implementation that make it worthwhile
testing your code on all possible browsers before final release.
You may need all these once you have a product ready to
release, just to ensure everything runs as expected on all
browsers and platforms.

If you plan to ensure that your sites look good on mobile
devices too, you should try to arrange access to a wide range
of iOS and Android devices, and services like BrowserStack
will help you with that. Browser developer tools also offer
mobile device emulation to help you verify the site is
responsive and viewable on those smaller screens.

What Is a WAMP, MAMP, or LAMP?
WAMP, MAMP, and LAMP are abbreviations for “Windows,
Apache, MySQL, PHP,” “Mac, Apache, MySQL, and PHP,”
and “Linux, Apache, MySQL, PHP.” These abbreviations each
describe a fully functioning setup used for developing
dynamic internet web pages.

WAMPs, MAMPs, and LAMPs come in the form of packages
that bind the bundled programs together so that you don’t have
to install and set them up separately. This means you can
simply download and install a single program and follow a
few easy prompts to get your web development server up and
running fast, with minimal hassle.

During installation, several default settings are created for you.
The security configurations of such an installation will not be
as tight as on a production web server, because it is optimized
for local use. For these reasons, you should never install such a
setup as a production server.

However, for developing and testing websites and
applications, one of these installations should be entirely
sufficient.

WARNING
If you choose not to go the WAMP/MAMP/LAMP route for building
your own development system, you should know that downloading
and integrating the various parts yourself can be very time-consuming
and may require a lot of research to configure everything fully. But if
you already have all the components installed and integrated with one
another, they should work with the examples in this book.

Installing AMPPS on Windows
There are several available WAMP servers, each offering
slightly different configurations. Different editions of this
book have recommended different WAMP products according
to which seems to offer the best features and appears the most
reliable at the time. Currently AMPPS looks like the best
option (although you could choose other alternatives if you
preferred and still be able to follow the examples in this book).
You can download AMPPS by clicking the download button
on the website’s home page. (There are also Mac and Linux
versions available; see “Installing AMPPS on macOS” and
“Installing a LAMP on Linux”.)

I recommend that you always download the latest stable
release (as I write this, it’s 4.4, the installer for which is about
46 MB in size). The various Windows, macOS, and Linux
installers are listed on the download page.

Once you’ve downloaded the installer, run it to bring up the
window shown in Figure 2-1. Before arriving at that window,
though, if you use an antivirus program or have User Account
Control activated on Windows, you may first be shown one or
more advisory notices and will have to click Yes and/or OK to
continue with the installation.

Click Next, after which you must accept the agreement. Click
Next once again, and then once more to move past the

https://ampps.com/

information screen. You will now need to confirm the
installation location. This will probably be suggested as
something like the following, depending on the letter of your
main hard drive, but you can change this if you wish:

C:\Program Files\Ampps

Figure 2-1. The opening window of the installer

NOTE
During the lifetime of this edition, some of the screens and options
shown in the following walk-through may change. If so, just use your
common sense to proceed as similarly as possible to the sequence of
actions described.

You must accept the agreements in the following screen and
click Next, then after reading the information summary click
Next once more and you will be asked which folder you wish
to install AMPPS into.

Once you have decided where to install AMPPS, click Next,
decide where shortcuts should be saved (the default shown is
usually just fine), and click Next again to choose which icons

you wish to install, as shown in Figure 2-2. On the screen that
follows, click the Install button to start the process.

Figure 2-2. Choose which icons to install

Installation will take a few minutes, after which you should
see the completion screen in Figure 2-3, and you can click
Finish.

Figure 2-3. AMPPS is now installed

The final thing you must do is install Microsoft Visual C++
Redistributable, if you haven’t already. A window will pop up
to prompt you, as shown in Figure 2-4. Click Install to start the
installation and if you already have it you will be told whether
you need to reinstall it, which you can skip.

Figure 2-4. Install the Visual C++ Redistributable if you don’t already have it

If you choose to go ahead and install, you will have to agree to
the terms and conditions in the pop-up window that appears

and then click Install. Installation of this should be fairly fast.
Click Close to finish.

Once AMPPS is installed, the control window shown in
Figure 2-5 should appear at the bottom right of your desktop.
You can also call up this window using the AMPPS
application shortcut in the Start menu or on the desktop, if you
allowed these icons to be created.

Before proceeding, if you have any further questions, I
recommend you acquaint yourself with the AMPPS
documentation; otherwise, you are set to go—there’s always a
Support link at the bottom of the control window that will take
you to the AMPPS website, where you can open a trouble
ticket if needed.

Figure 2-5. The AMPPS control window

https://ampps.com/docs

You may notice that the default version of PHP in AMPPS is
8.2. If you wish to try other versions for any reason, click the
Options button (nine white boxes in a square) within the
AMPPS control window and then select Change PHP Version;
a new menu will appear from which you can choose to install
a different version.

Testing the Installation
The first thing to do at this point is verify that everything is
working correctly. To do this, enter the following URL into the
address bar of your browser:

http://localhost

This will call up an introductory screen, where you can secure
AMPPS by giving it a password (see Figure 2-6). It is up to
you now whether or not to secure the program. If only you will
have access to the PC you may choose not to. But if there
could be any security implications then you probably should
password protect the installation.

Figure 2-6. The initial security setup screen

Once this has been completed you will be taken to the main
control page at http://localhost/ampps/. From here you can
configure and control all aspects of the AMPPS stack, so note
this for future reference or set a bookmark in your browser.

Next, type the following to view the document root (described
in the following section) of your new Apache web server:

http://localhost

This time, rather than seeing the initial screen about setting up
security, you should see something similar to Figure 2-7,
although the files shown may be different.

Figure 2-7. Viewing the document root

Accessing the Document Root (Windows)
The document root is the directory that contains the main web
documents for a domain. This directory is the one that the
server uses when a basic URL without a path is typed into a
browser, such as http://yahoo.com or, for your local server,
http://localhost.

By default AMPPS will use the following location as the
document root:

C:\Program Files\Ampps\www

To ensure that you have everything correctly configured, you
should now create the obligatory “Hello World” file. So, create
a small HTML file along the following lines using a plain-text
editor such as Windows Notepad (which will work just fine,
although better suited applications called code editors are
discussed later in this chapter):

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>A quick test</title>

 </head>

 <body>

 Hello World!

 </body>

</html>

Once you have typed this, save the file into the document root
directory, using the filename test.html.

You can now call up this page in your browser by entering the
following URL in its address bar (see Figure 2-8):

http://localhost/test.html

Figure 2-8. Your first web page

Remember that serving a web page from the document root (or
a subfolder) is different from loading one into a web browser
from your computer’s filesystem. The former will ensure
access to PHP, MySQL, and all the features of a web server,
while the latter will simply load the file into the browser,
which will do its best to display it but will be unable to process
any PHP or other server instructions. So, you should generally
run examples using the localhost preface from your browser’s
address bar, unless you are certain that the file doesn’t rely on
web server functionality.

Alternative WAMPs
When software is updated, it sometimes works differently
from how you expect, and bugs can even be introduced. So, if
you encounter difficulties that you cannot resolve in AMPPS,
you may prefer one of the other solutions available on the
web.

You will still be able to use all the examples in this book, but
you’ll have to follow the instructions supplied with each
WAMP, which may not be as easy to follow as the preceding
guide.

Here’s a selection of some of the best alternatives, in my
opinion:

EasyPHP

XAMPP

WAMPServer

https://easyphp.org/
https://apachefriends.org/
https://oreil.ly/CIrSe

NOTE
Over the life of this edition of the book, it is very likely that the
developers of AMPPS will improve the software, and therefore the
installation screens and method of use may evolve over time, as may
versions of Apache, PHP, or MySQL. So, please don’t assume
something is wrong if the screens and operation look different. The
AMPPS developers take every care to ensure it is easy to use, so just
follow any prompts given and refer to the documentation on the
AMPPS website.

Installing AMPPS on macOS
AMPPS is also available on macOS, and you can download it
from the AMPPS website (as I write, the current version is 4.3,
and the installer size is around 38 MB).

If your browser doesn’t open it automatically once it has
downloaded, double-click the .dmg file, and then drag the
AMPPS folder over to your Applications folder (see Figure 2-
9).

Figure 2-9. Drag the AMPPS folder to Applications

Open your Applications folder as usual, and double-click the
AMPPS program. If your security settings prevent the file
being opened, hold down the Control key and click the icon
once. A new window will pop up asking if you are sure you

https://ampps.com/
https://ampps.com/

wish to open it. Click Open to do so. When the app starts, you
may have to enter your macOS password to proceed.

Once AMPPS is up and running, a control window similar to
the one shown in Figure 2-5 will appear at the bottom left of
your desktop.

NOTE
You may notice that the default version of PHP in AMPPS is 8.2. If
you wish to try a different version for any reason, click the Options
button (nine white boxes in a square) within the AMPPS control
window, then select Change PHP. A new menu will appear in which
you can choose to install other versions of PHP.

By default, AMPPS will use the following location as the
document root:

/Applications/Ampps/www

To ensure that you have everything correctly configured, you
should now create the obligatory “Hello World” file. So, create
a small HTML file along the following lines using the
TextEdit program (which will work just fine, although better
suited applications called code editors are discussed later in
this chapter):

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>A quick test</title>

 </head>

 <body>

 Hello World!

 </body>

</html>

Once you have typed this, save the file into the document root
directory using the filename test.html.

You can now call up this page in your browser by entering the
following URL in its address bar (to see a similar result to
Figure 2-8):

http://localhost/test.html

NOTE
Remember that serving a web page from the document root (or a
subfolder) is different from loading one into a web browser from your
computer’s filesystem. The former will ensure access to PHP, MySQL,
and all the features of a web server, while the latter will simply load
the file into the browser, which will do its best to display it but will be
unable to process any PHP or other server instructions. So, you should
generally run examples using the localhost preface from your
browser’s address bar, unless you are certain that the file doesn’t rely
on web server functionality.

Installing a LAMP on Linux
This book is aimed mostly at PC and Mac users, but its
contents will work equally well on a Linux computer.
However, there are dozens of popular flavors of Linux, and
each may require installing a LAMP in a slightly different
way, so I can’t cover them all in this book.

That said, some Linux versions come preinstalled with a web
server and MySQL, and chances are that you may already be
all set. To find out, try entering the following into a browser
and see whether you get a default document root web page:

http://localhost

If this works, you probably have the Apache server installed
and may well have MySQL up and running too; check with
your system administrator to be sure.

Working Remotely
If you have access to a web server already configured with
PHP and MySQL, you can always use that for your web
development. But unless you have a high-speed connection, it
is not always your best option. Developing locally allows you
to test modifications with little or no upload delay.

Accessing MySQL remotely may not be easy either. You
should use the secure SSH protocol to log in to your server to
manually create databases and set permissions from the
command line. Your web hosting company will advise you on
how best to do this and provide you with any password it has
set for your MySQL access (as well as, of course, for getting
into the server in the first place).

Logging In
I recommend that Windows users should install a program
such as PuTTY for SSH access (SSH is much more secure
than the Telnet protocol). Although modern Windows come
with SSH preinstalled, PuTTY’s user interface may be a bit
easier to use especially if you’re a beginner.

On a Mac, you already have SSH available as well. Just select
the Applications folder, followed by Utilities, and then launch
Terminal. In the Terminal window, log in to a server using
SSH like this:

ssh mylogin@server.com

where server.com is the name of the server you wish to log in
to and mylogin is the username you will log in under. You will
then be prompted for the correct password for that username
and, if you enter it correctly, you will be logged in.

Transferring Files
To transfer files to and from your web server, you will need a
file transfer program that implements an FTPS or SFTP
protocol, to ensure proper security on your web server. If you
go searching the web for a good client, you’ll find so many
that it could take you quite a while to locate one with all the
right features for you.

https://putty.org/

DON’T USE FTP
FTP is insecure and should not be used. There are far safer methods
than FTP for transferring files, such as SSH-based SFTP (SSH File
Transfer Protocol or Secure File Transfer Protocol) and SCP (Secure
Copy Protocol) are gaining traction. Good FTP programs, however,
will also support SFTP and FTPS (FTP-SSL). Often the means of file
transfer you use will be determined by the policies of the company you
work for, but for personal use an FTP program such as FileZilla
(discussed next) will provide most (if not all) of the functionality and
security you require.

My preferred SFTP program is the open source FileZilla, for
Windows, Linux, and macOS 10.5 or newer (see Figure 2-10).
Full instructions on how to use FileZilla are available on the
FileZilla Wiki.

Figure 2-10. FileZilla is a full-featured SFTP program

Another well-known tool is WinSCP which, despite its name,
also supports SFTP and FTP. Of course, if you already have an
FTPS or SFTP program, all the better—stick with what you
know.

Using a Code Editor

https://oreil.ly/AKKQN
https://oreil.ly/yVpXK
https://winscp.net/

Although a plain-text editor works for editing HTML, PHP,
and JavaScript, there have been some tremendous
improvements in dedicated code editors, which now
incorporate very handy features such as colored syntax
highlighting. Today’s program editors are smart and can show
your syntax errors before you even run a program. Once
you’ve used a modern editor, you’ll wonder how you ever
managed without one.

There are a number of good programs available, but I have
settled on Visual Studio Code (VSC) from Microsoft because
it’s powerful; runs on all of Windows, Mac, and Linux; and is
free (see Figure 2-11). It is also a comprehensive developing
environment and is becoming ever more standard in the
industry.

Figure 2-11. Program editors (like Visual Studio Code) are superior to plain-
text editors

As you can see in Figure 2-11, VSC highlights the syntax
appropriately, using colors to help clarify what’s going on.
What’s more, you can place the cursor next to brackets or
braces, and it will highlight the matching ones so that you can
check whether you have too many or too few. In fact, VSC

does a lot more in addition, which you will discover and enjoy
as you use it. You can download a copy from the Visual Studio
website.

Again, if you have a different preferred program editor, use
that; it’s always a good idea to use programs you’re already
familiar with. However, you will be hard pressed to find
something better than the now industry standard VSC, and you
should know how to use this product as many job positions
will require it.

Having reached the end of this chapter you will have
everything set up and installed, ready to commence your
journey into mastering the various development technologies
in this book, beginning with a solid introduction to PHP in the
following chapter. But before you go, take a couple of minutes
to answer the following questions to ensure you have
remembered the main points.

Questions
1. What is the difference between a WAMP, a MAMP,

and a LAMP?

2. What is the purpose of an SFTP program?

3. Name the main disadvantage of working on a remote
web server.

4. Why is it better to use a code editor instead of a plain-
text editor?

See “Chapter 2 Answers” in the Appendix A for the answers to
these questions.

https://oreil.ly/QY2AS

Chapter 3. Introduction to
PHP

In Chapter 1, I explained that PHP is the language you use to
make the server generate dynamic output—output that is
potentially different each time a browser requests a page. In
this chapter, you’ll start learning this simple but powerful
language; it will be the topic of the following chapters through
Chapter 7.

In production, your web pages will be a combination of
HTML, CSS, JavaScript, PHP, and SQL. Furthermore, each
page can lead to other pages to provide users with ways to
click through links and fill out forms.

We can avoid all that complexity while learning each
language, though. Let’s focus, for now, on just writing PHP
code and making sure that you get the output you expect—or
at least that you understand the output you actually get!

Incorporating PHP Within HTML
By default, PHP documents end with the extension .php.
When a web server encounters this extension in a requested
file, it automatically passes it to the PHP processor. Of course,
web servers are highly configurable, and some web developers
choose to force files ending with .htm or .html to also get
parsed by the PHP processor, usually because they want to
hide their use of PHP.

Your PHP program is responsible for passing back a clean file
suitable for display in a web browser. At its very simplest, a
PHP document will output only HTML. To prove this, you can
take any normal HTML document and save it as a PHP
document (for example, saving index.html as index.php), and it

will display identically to the original (as long as the file is
being served with Apache and not directly from your
filesystem).

To trigger the PHP commands, you need to learn a new tag.
Here is the first part:

<?php

The first thing you may notice is that the tag has not been
closed. This is because entire sections of PHP can be placed
inside this tag, and they finish only when the closing part is
encountered, which looks like this:

?>

A small PHP “Hello World” program might look like
Example 3-1.

Example 3-1. Invoking PHP

<?php

 echo "Hello world";

?>

Use of this tag can be quite flexible. Some programmers open
the tag at the start of a document and close it right at the end,
outputting any HTML directly from PHP commands. Others,
however, choose to insert only the smallest possible fragments
of PHP within these tags wherever dynamic scripting is
required, leaving the rest of the document in standard HTML.

The latter type of programmer generally argues that their style
of coding results in faster code, while the former says that the
speed increase is so minimal that it doesn’t justify the
additional complexity of dropping in and out of PHP many
times in a single document.

As you learn more, you will discover your preferred style of
PHP development, but for the sake of making the examples in
this book easier to follow, I have adopted the approach of

keeping the number of transfers between PHP and HTML to a
minimum—generally only once or twice in a document.

By the way, there is a slight variation to the PHP syntax. If you
browse the internet for PHP examples, you may also encounter
code where the opening and closing syntax looks like this:

<?

 echo "Hello world";

?>

Although it’s not as obvious that the PHP parser is being
called, this is a valid, alternative syntax that also works. But I
discourage its use, as it is incompatible with XML and is now
deprecated (meaning that it is no longer recommended and
support could be removed in future versions).

NOTE
If you have only PHP code in a file, you may omit the closing ?>. This
can be a good practice, as it will ensure that you have no excess
whitespace leaking from your PHP files. It is especially important
when you’re writing and including object-oriented code; otherwise, a
trailing newline character inserted after the closing part may be sent to
the browser when it’s not expected.

This Book’s Examples
To save you the time it would take to type them all in, you can
find all the examples from this book in the repo at GitHub.

In addition to listing all the examples by chapter and example
number, some of the examples may require explicit filenames,
in which case copies of the example(s) are also saved using the
filename(s) in the same folder (such as the upcoming
Example 3-4, which should be saved as test1.php).

The Structure of PHP
We’re going to cover a lot of ground in this section, and I
recommend that you work your way through it carefully, as it

https://github.com/RobinNixon/lpmj7

lays the foundation for everything else in this book. As
always, there are some useful questions at the end of the
chapter that you can use to test how much you’ve learned.

Using Comments
There are two ways to add comments to your PHP code. The
first turns a single line into a comment by preceding it with a
pair of forward slashes:

// This is a comment

This version of the comment feature is a great way to
temporarily remove a line of code from a program that is
giving you errors. For example, you could use such a comment
to hide a debugging line of code until you need it, like this:

// echo "X equals $x";

You can also use this type of comment directly after a line of
code to describe its action, like this:

$x += 10; // Move 10 pixels for visual separation

SINGLE-LINE # COMMENTS
As well as using // to signify the start of a single-line comment, you
can use the # symbol. However, this is less common and, as of PHP
version 8, single-line comments starting with #[now have a special
meaning (being treated as attributes). Consequently I prefer to stick
with the // style.

When you need to use multiple lines, there’s a second type of
comment, which looks like Example 3-2.

Example 3-2. A multiline comment

<?php

/* This is a section

 of multiline comments

 which will not be

 interpreted */

?>

You can use the /* and */ pairs of characters to open and
close comments almost anywhere you like inside your code.
Most programmers use this construct to temporarily comment
out entire sections of code that do not work or that, for one
reason or another, they do not wish to be interpreted.

WARNING
A common error is to use /* and */ to comment out a large section of
code that already contains a commented-out section that uses those
characters. You can’t nest comments this way; the PHP interpreter
won’t know where a comment ends and will display an error message.
However, if you use an editor or IDE with syntax highlighting, this
type of error is easier to spot.

Basic Syntax
PHP is quite a simple language with roots in C and Perl (if you
have ever come across these), yet it looks more like Java. It is
also very flexible, but you need to learn a few rules about its
syntax and structure.

Semicolons
You may have noticed in the previous examples that the PHP
commands ended with a semicolon, like this:

$x += 10;

One of the most common causes of errors you will encounter
with PHP is forgetting this semicolon. This causes PHP to
treat multiple statements like one statement, which it is unable
to understand, prompting it to produce a Parse error
message.

The $ symbol

The $ symbol is used in many different ways by different
programming languages. For example, in the BASIC

language, it was used to terminate variable names to denote
them as strings.

In PHP, however, you must place a $ in front of all variables.
This is required to make the PHP parser faster, as it instantly
knows whenever it comes across a variable. Whether your
variables are numbers, strings, or arrays, they should all look
something like those in Example 3-3.

Example 3-3. Three different types of variable assignment

$mycounter = 1;

$mystring = "Hello";

$myarray = array("One", "Two", "Three");

That’s pretty much all the syntax you have to remember.
Unlike languages such as Python, which are very strict about
how you indent and lay out your code, PHP leaves you
completely free to use (or not use) all the indenting and
spacing you like. In fact, sensible use of whitespace is
generally encouraged (along with comprehensive
commenting) to help you understand your code when you
come back to it. It also helps other programmers when they
have to maintain your code.

Variables
A simple metaphor will help you understand what PHP
variables are all about. Just think of them as little (or big)
matchboxes! That’s right—matchboxes that you’ve painted
over and written names on.

String variables
Imagine you have a matchbox on which you have written the
word username. You then write Fred Smith on a piece of paper
and place it into the box (see Figure 3-1). That’s the same
process as assigning a string value to a variable, like this:

$username = "Fred Smith";

The quotation marks indicate that “Fred Smith” is a string of
characters. You must enclose each string in either quotation
marks or apostrophes (single quotes), although there is a subtle
difference between the two types of quote, as explained later.
When you want to see what’s in the box, you open it, take out
the piece of paper, and read it. In PHP, doing so looks like this
(which displays the contents of the variable):

echo $username;

Or you can assign it to another variable (photocopy the paper
and place the copy in another matchbox), like this:

$current_user = $username;

Figure 3-1. You can think of variables as matchboxes containing items

Let’s bring all these variables together to form a complete
program, as in Example 3-4.

Example 3-4. Your first PHP program

<?php // test1.php

 $username = "Fred Smith";

 echo $username;

 echo "
";

 $current_user = $username;

 echo $current_user;

?>

Now you can call it up by entering the following into your
browser’s address bar:

http://localhost/test1.php

NOTE
In the unlikely event that during the installation of your web server (as
detailed in Chapter 2) you changed the port assigned to the server to
anything other than 80, then you must place that port number within
the URL in this and all other examples in this book. So, for example, if
you changed the port to 8080, the preceding URL would become this:

http://localhost:8080/test1.php

I won’t mention this again, so just remember to use the port number (if
required) when trying examples or writing your own code.

The result of running this code should be two occurrences of
the name Fred Smith: the first is the result of the echo
$username command and the second is the result of the echo
$current_user command.

Numeric variables
Variables don’t have to contain just strings—they also can
contain numbers. If we return to the matchbox analogy, to
store the number 17 in the variable $count, the equivalent
would be placing, say, 17 beads in a matchbox on which you
have written the word count:

$count = 17;

You could also use a floating-point number (containing a
decimal point). The syntax is the same:

$count = 17.5;

If you want to use the number in PHP, you can assign the
value of $count to another variable or perhaps just echo it to
the web browser. Either of those would be the equivalent to
opening the matchbox and counting the beads.

Arrays
You can think of arrays as several matchboxes glued together.
For example, say we want to store the player names for a five-
person soccer team in an array called $team. To do this, we
could glue five matchboxes side by side and write the names
of all the players on separate pieces of paper, placing one in
each matchbox.

Across the top of the whole matchbox assembly we would
write the word team (see Figure 3-2). The equivalent of this in
PHP would be:

$team = array('Bill', 'Mary', 'Mike', 'Chris', 'Anne');

Figure 3-2. An array is like several matchboxes glued together

This syntax is more complicated than the examples you’ve
seen so far. The array-building code consists of the following
construct:

array();

with five strings inside. Each string is enclosed in apostrophes
or quotes, and strings must be separated with commas.

SHORT ARRAY SYNTAX
An alternative short array syntax uses [...] instead of the
array(...) construct. The previous array could also be written as:

$team = ['Bill', 'Mary', 'Mike', 'Chris', 'Anne'];

If we then wanted to know who player 4 is, we could use this
command:

echo $team[3]; // Displays the name Chris

The reason the previous statement has the number 3, not 4, is
that the first element of a PHP array is actually the zeroth
element, so the player numbers will therefore be 0 through 4.

Two-dimensional arrays
There’s a lot more you can do with arrays. For example,
instead of being single-dimensional lines of matchboxes, they
can be two-dimensional matrixes or have even more
dimensions.

As an example of a two-dimensional array, say we want to
keep track of a game of tic-tac-toe, which requires a data
structure of nine cells arranged in a 3 × 3 square. To represent
this with matchboxes, imagine nine of them glued to one
another in a matrix of three rows by three columns using an
array named $oxo (see Figure 3-3).

Figure 3-3. A multidimensional array simulated with matchboxes

You can now place a piece of paper with either an x or an o on
it in the correct matchbox for each move played. To do this in
PHP code, you have to set up an array containing three more
arrays, as in Example 3-5, in which the array is set up with a
game already in progress.

Example 3-5. Defining a two-dimensional array

<?php

 $oxo = array(array('x', ' ', 'o'),

 array('o', 'o', 'x'),

 array('x', 'o', ' '));

?>

Once again, we’ve moved up a step in complexity, but it’s easy
to understand if you grasp the basic array syntax. There are
three array() constructs nested inside the outer array()
construct. We’ve filled each row with an array consisting of
just one character: an x, an o, or a blank space. (We use a

blank space so that all the cells will be the same width when
they are displayed.)

To then return the third element in the second row of this
array, you would use the following PHP command, which will
display an x:

echo $oxo[1][2];

NOTE
Remember that array indexes (pointers at elements within an array)
start from zero, not one, so the [1] in the previous command refers to
the second of the three arrays, and the [2] references the third position
within that array. This command will return the contents of the
matchbox three along and two down.

As mentioned, we can support arrays with even more
dimensions by simply creating more arrays within arrays.
However, we will not be covering arrays of more than two
dimensions in this book.

And don’t worry if you’re still having difficulty coming to
grips with using arrays, as the subject is explained in detail in
Chapter 6.

Variable-naming rules
When creating PHP variables, you must follow these four
rules:

Variable names, after the dollar sign, must start with a
letter of the alphabet or the _ (underscore) character.

Variable names can contain only the characters a–z,
A–Z, 0–9, and _ (underscore).

Variable names may not contain spaces. If a variable
name must comprise more than one word, separate
the words with the _ (underscore) character (e.g.,
$user_name).

Variable names are case-sensitive. The variable
$High_Score is not the same as the variable
$high_score.

NOTE
To allow extended ASCII characters that include accents, PHP also
supports the bytes from 127 through 255 in variable names as well as
Unicode characters. However, be aware that programmers using
English keyboards will have difficulty accessing any you use.

Operators
Operators let you specify mathematical operations to perform,
such as addition, subtraction, multiplication, and division. But
several other types of operators also exist, such as the string,
comparison, and logical operators. Math in PHP looks a lot
like plain arithmetic—for instance, the following statement
outputs 8:

echo 6 + 2;

Before moving on to learn what PHP can do for you, let’s take
a moment to examine the various operators it provides.

Arithmetic operators
Arithmetic operators do what you would expect—they are
used to perform mathematics. You can use them for the main
four operations (add, subtract, multiply, and divide) as well as
to find a modulus (the remainder after a division) and to
increment or decrement a value (see Table 3-1).

Table 3-1. Arithmetic operators

Operator Description Example

+ Addition $j + 1

– Subtraction $j – 6

* Multiplication $j * 11

/ Division $j / 4

% Modulus (the remainder
after a division is
performed)

$j % 9

++ Increment ++$j

-- Decrement --$j

** Exponentiation (or
power)

$j**2

Assignment operators
Assignment operators assign values to variables. They start
with the very simple = and move on to +=, -=, and so on (see
Table 3-2). The operator += adds the value on the right side to
the variable on the left, instead of totally replacing the value
on the left. Thus, if $count starts with the value 5, the
statement:

$count += 1;

sets $count to 6, just like the more familiar assignment
statement:

$count = $count + 1;

The /= and *= operators are similar, but for division and
multiplication, the .= operator concatenates variables, such
that $a .= "." will append a period to the end of $a:

$a = "Hello";

$a .= "."; // Equivalent to writing $a = $a . ".";

echo $a; // The output is Hello.

The %= operator assigns the modulus:

$number = 12;

$number %= 10; // Equivalent to writing $number = $number % 10;

echo $number; // Echoes 2, the remainder of 12 divided by 10.

Table 3-2. Assignment operators

Operator Example Equivalent to

= $j = 15 $j = 15

+= $j += 5 $j = $j + 5

–= $j -= 3 $j = $j – 3

*= $j *= 8 $j = $j * 8

/= $j /= 16 $j = $j / 16

.= $j .= $k $j = $j . $k

%= $j %= 4 $j = $j % 4

Comparison operators
Comparison operators are generally used inside a construct
such as an if statement in which you need to compare two
items. For example, you may wish to know whether a variable
you have been incrementing has reached a specific value, or
whether another variable is less than a set value, and so on (see
Table 3-3).

Table 3-3. Comparison operators

Operator Description Example

== Is equal to $j == 4

!= Is not equal to $j != 21

> Is greater than $j > 3

< Is less than $j < 100

>= Is greater than or equal
to

$j >= 15

<= Is less than or equal to $j <= 8

<> Is not equal to $j <> 23

=== Is identical to $j === "987"

!== Is not identical to $j !== "1.2e3"

Note the difference between = and ==. The first is an
assignment operator, and the second is a comparison operator.
Also remember that == compares the two values for being
equivalent, while === requires them to be identical. Even
advanced programmers can sometimes confuse the use of
these when coding hurriedly, so be careful.

Logical operators
If you haven’t used them before, logical operators may at first
seem a little daunting. But just think of them the way you
would use logic in English. For example, you might say to
yourself, “If the time is later than 12 p.m. and earlier than 2
p.m., have lunch.” In PHP, the code for this might look
something like this (using military, twenty-four-hour time):

if ($hour > 12 && $hour < 14) dolunch();

Here we have moved the set of instructions for actually going
to lunch into a function that we will have to create later called
dolunch.

As the previous example shows, you generally use a logical
operator to combine the results of two of the comparison
operators shown in “Comparison operators”. A logical
operator can also be input to another logical operator: “If the
time is later than 12 p.m. and earlier than 2 p.m., or if the
smell of a roast is permeating the hallway and there are plates
on the table.” As a rule, if something has a TRUE or FALSE
value, it can be input to a logical operator. A logical operator
takes two true or false inputs and produces a true or false
result.

Table 3-4 shows the logical operators according to precedence,
which is discussed in Chapter 4.

Table 3-4. Logical operators

Operator Description Example

&& And $j == 3 && $k == 2

and Low-precedence and $j == 3 and $k == 2

|| Or $j < 5 || $j > 10

or Low-precedence or $j < 5 or $j > 10

! Not ! ($j == $k)

xor Exclusive or $j xor $k

Note that && is usually interchangeable with and; the same is
true for || and or. However, because and and or have a lower
precedence, you should avoid using them except when they

are the only option, as in the following statement, which must
use the or operator (|| cannot be used to force a second
statement to execute if the first fails):

$html = file_get_contents($site) or die("Cannot download from

$site");

Operator precedence
Operator precedence determines how particular expressions
are grouped together. The concept is also used in common
math as illustrated by the following statement:

5 + 2 * 3

The result is 11, because multiplication has a higher
precedence than addition, so the result is computed as 2
multiplied by 3, which equals to 6, plus 5. It can be rewritten
as:

5 + (2 * 3)

The parentheses in this case are optional but they help to
illustrate the precedence. In other cases, parentheses can be
used to change or force precedence, for example the result of
the following statement is 21:

(5 + 2) * 3

You’ll learn more about operator precedence in Chapter 4.

The most unusual of these operators is xor, which stands for
exclusive or and returns a TRUE value if either value is TRUE
but a FALSE value if both inputs are TRUE or both inputs are
FALSE. To understand this, imagine that you want to concoct
your own cleaner for household items. Ammonia makes a
good cleaner and so does bleach, so you want your cleaner to
have one of these. But the cleaner must not have both, because
the combination is hazardous. In PHP, you could represent this

as follows (using parentheses because xor has a lower
precedence than =):

$ammonia = true;

$bleach = false;

$safe = ($ammonia xor $bleach);

echo $safe; // output 1 which is true

In this example, if either $ammonia or $bleach is TRUE, $safe
will also be set to TRUE. But if both are TRUE or both are
FALSE, $safe will be set to FALSE.

Variable Assignment
The syntax to assign a value to a variable is always $variable
= value. Or, to reassign the value to another variable, it is
$other_variable = $variable, remembering to preface
variable names with $ symbols in PHP.

There are a couple of other assignment operators that you will
find useful. For example, we’ve already seen this:

$x += 10;

which tells the PHP parser to add the value on the right (in this
instance, the value 10) to the variable $x. Likewise, we could
subtract:

$y –= 10;

Variable incrementing and decrementing
Adding or subtracting 1 (known as incrementing and
decrementing) is such a common operation that PHP provides
special operators for it. You can use one of the following in
place of the += and -= operators:

++$x;

--$y;

In conjunction with a test (an if statement), you could use this
code:

if (++$x == 10) echo $x;

which tells PHP to first increment the value of $x and then to
test whether it has the value 10 and, if it does, to output its
value. But you can also require PHP to increment (or, as in the
following example, decrement) a variable after it has tested
the value, like this:

if ($y-- == 0) echo $y;

which gives a subtly different result. Suppose $y starts out as 0
before the statement is executed. The comparison will return a
TRUE result, but $y will be set to –1 after the comparison is
made. So what will the echo statement display: 0 or –1? Try to
guess, and then try out the statement in a PHP processor to
confirm. Because this combination of statements is confusing,
it should be taken as an educational example and not as a
guide to good programming style.

In short, a variable is incremented or decremented before the
test if the operator is placed before the variable, whereas the
variable is incremented or decremented after the test if the
operator is placed after the variable.

By the way, the correct answer to the previous question is that
the echo statement will display the result –1, because $y was
decremented right after it was accessed in the if statement,
and before the echo statement.

String concatenation
Concatenation is a somewhat arcane term for putting
something after another thing. So, in PHP, string concatenation
uses the period (.) to append one string of characters to
another. The simplest way to do this is:

echo "You have " . $msgs . " messages.";

Assuming that the variable $msgs is set to the value 5, the
output from this line of code will be:

You have 5 messages.

Just as you can add a value to a numeric variable with the +=
operator, you can append one string to another using .=, like
this:

$bulletin = "This is a test of the broadcast system.";

$newsflash = "Houston, we have a problem.";

$bulletin .= " " . $newsflash;

echo $bulletin;

In this case, if $bulletin contains a news bulletin and
$newsflash has a news flash, the command appends the news
flash to the news bulletin so that $bulletin now comprises
both strings of text.

String types
PHP supports two types of strings that are denoted by the type
of quotation mark that you use. If you wish to assign a literal
string, preserving the exact contents, you should use single
quotation marks (apostrophes), like this:

$info = 'Preface variables with a $ like this: $variable';

In this case, every character within the single-quoted string is
assigned to $info. If you had used double quotes, PHP would
have attempted to evaluate $variable as a variable.

On the other hand, when you want to include the value of a
variable inside a string, you do so by using double-quoted
strings. You can wrap the variable name in curly braces { and
} to explicitly specify the end of the variable name:

echo "This week {$count} people have viewed your profile";

As you can see, this syntax also offers a simpler option to
concatenation in which you don’t need to use a period, or
close and reopen quotes, to append one string to another. This
is called variable substitution or variable interpolation, and
some programmers use it extensively, whereas others don’t use
it at all.

Escaping characters
Sometimes a string needs to contain characters with special
meanings that might be interpreted incorrectly. For example,
the following line of code will not work, because the second
quotation mark encountered in the word spelling’s will tell the
PHP parser that the string’s end has been reached.
Consequently, the rest of the line will be rejected as an error:

$text = 'My spelling's atroshus'; // Erroneous syntax

To correct this, you can add a backslash directly before the
offending quotation mark to tell PHP to treat the character
literally and not to interpret it:

$text = 'My spelling\'s still atroshus';

And you can perform this trick in almost all situations in
which PHP would otherwise return an error by trying to
interpret a character. For example, the following double-
quoted string will be correctly assigned:

$text = "She wrote upon it, \"Return to sender\".";

Additionally, you can use escape characters to insert various
special characters into strings, such as tabs, newlines, and
carriage returns. These are represented, as you might guess, by
\t, \n, and \r. Here is an example using tabs to lay out a
heading—it is included here merely to illustrate escapes,
because in web pages there are always better ways to do
layout:

$heading = "Date\tName\tPayment";

These special backslash-preceded characters work only in
double-quoted strings. In single-quoted strings, the preceding
string would be displayed with the ugly \t sequences instead
of tabs. Within single-quoted strings, only the escaped
apostrophe (\') and escaped backslash itself (\\) are
recognized as escaped characters.

Multiline Strings
There are times when you need to output quite a lot of text
from PHP, and using several echo (or print) statements
would be time-consuming and messy. To overcome this, PHP
offers two conveniences. The first is just to put multiple lines
between quotes, as in Example 3-6. Variables can also be
assigned, as in Example 3-7.

Example 3-6. A multiline string echo statement

<?php

 $author = "Steve Ballmer";

 echo "Developers, developers, developers, developers,

developers,

 developers, developers, developers, developers!

 - $author.";

?>

Example 3-7. A multiline string assignment

<?php

 $author = "Bill Gates";

 $text = "Measuring programming progress by lines of code is

like

 Measuring aircraft building progress by weight.

 - $author.";

?>

PHP also offers a multiline sequence using the <<< operator—
commonly referred to as a here-document or heredoc—as a
way of specifying a string literal, preserving the line breaks
and other whitespace (including indentation) in the text. Its use
can be seen in Example 3-8.

Example 3-8. Alternative multiline echo statement

<?php

 $author = "Brian W. Kernighan";

 echo <<<_END

 Debugging is twice as hard as writing the code in the first

place.

 Therefore, if you write the code as cleverly as possible, you

are,

 by definition, not smart enough to debug it.

 - $author.

_END;

?>

This code tells PHP to output everything between the two
_END tags as if it were a double-quoted string (except that
quotes in a heredoc do not need to be escaped). This means it’s
possible, for example, for a developer to write entire sections
of HTML directly into PHP code and then just replace specific
dynamic parts with PHP variables.

It is important to remember that the closing _END; must appear
right at the start of a new line, and it must be the only thing on
that line—not even a comment is allowed to be added after it
(nor even a single space). Once you have closed a multiline
block, you are free to use the same tag name again.

NOTE
Remember: using the <<<_END..._END; heredoc construct, you don’t
have to add \n linefeed characters to send a linefeed—just press
Return and start a new line. Also, unlike in either a double-quote-
delimited or single-quote-delimited string, you are free to use all the
single and double quotes you like within a heredoc, without escaping
them by preceding them with a backslash (\).

Example 3-9 shows how to use the same syntax to assign
multiple lines to a variable.

Example 3-9. A multiline string variable assignment

<?php

 $author = "Scott Adams";

 $out = <<<_END

 Normal people believe that if it ain't broke, don't fix it.

 Engineers believe that if it ain't broke, it doesn't have

enough

 features yet.

 - $author.

_END;

echo $out;

?>

The variable $out will then be populated with the contents
between the two tags. If you were appending, rather than
assigning, you also could have used .= in place of = to append
the string to $out.

Be careful not to place a semicolon directly after the first
occurrence of _END, as that would terminate the multiline
block before it had even started and cause a Parse error
message.

By the way, the _END tag is simply one I chose for these
examples because it is unlikely to be used anywhere else in
PHP code and is therefore unique. You can use any tag you
like, such as _SECTION1 or _OUTPUT and so on. Also, to help
differentiate tags such as this from variables or functions, the
general practice is to preface them with an underscore.

Using a nowdoc
If you wish to prevent PHP from parsing any variables
encountered within a heredoc, you can use a nowdoc instead.
It works in almost the same way, except that the name you
choose for your end tag should be enclosed in single quotes at

the start of the nowdoc, as in Example 3-10, where the
difference between it and Example 3-9 is shown in bold.

Example 3-10. A nowdoc multiline assignment
<?php

 $author = "Scott Adams";

 $out = <<<'_END'

 Normal people believe that if it ain't broke, don't fix it.

 Engineers believe that if it ain't broke, it doesn't have enough

 features yet.

 - $author.

_END;

echo $out;

?>

In this instance $author will not be replaced with the string
Scott Adams and will simply remain displayed as $author.

NOTE
Laying out text over multiple lines is usually just a convenience to
make your PHP code easier to read, because once it is displayed in a
web page, HTML formatting rules take over and whitespace is
suppressed (but in a heredoc, $author in our example will still be
replaced with the variable’s value, unlike in a nowdoc).

So, for example, if you load these multiline output examples into a
browser, they will not display over several lines, because all browsers
treat newlines just like spaces. However, if you use the browser’s View
Source feature, you will find that the newlines are correctly placed and
that PHP preserved the line breaks.

Variable Typing
PHP is a loosely typed language. This means variables do not
have to be declared before they are used and PHP always
converts variables to the type required by their context when
they are accessed.

For example, you can create a multiple-digit number and
extract the nth digit from it simply by assuming it to be a
string. In Example 3-11, the numbers 12345 and 67890 are
multiplied together, returning a result of 838102050, which is
then placed in the variable $number.

Example 3-11. Automatic conversion from a number to a
string

<?php

 $number = 12345 * 67890;

 echo substr($number, 3, 1);

?>

At the point of the assignment, $number is a numeric variable.
But on the second line, a call is placed to the PHP function
substr, which asks for one character to be returned from
$number, starting at the fourth position (remember that PHP
offsets start from zero). To do this, PHP turns $number into a
nine-character string so that substr can access it and return
the character, which in this case is 1.

The same goes for turning a string into a number, and so on. In
Example 3-12, the variable $pi is set to a string value, which
is then automatically turned into a floating-point number in the
third line by the equation for calculating a circle’s area, which
outputs the value 78.5398175.

Example 3-12. Automatically converting a string to a number

<?php

 $pi = "3.1415927";

 $radius = 5;

 echo $pi * ($radius * $radius);

?>

In practice, what this means is that you don’t have to worry
too much about your variable types, although it is possible for
type declarations to be added to function arguments, return
values, and (as of PHP 7.4.0) class properties, ensuring that
the value is of the specified type at call time; otherwise, a
TypeError is thrown.

Assuming type declarations are not being used, just assign
them values that make sense to you, and PHP will convert
them if necessary. Then, when you want to retrieve values, just

https://oreil.ly/bobD5

ask for them—for example, with an echo statement, but do
remember that sometimes automatic conversions do not
operate quite as you might expect.

If type declarations are being used to make the code behave
more predictably, you can change the type of the variable by
prefixing it with the chosen type in parentheses, like this:

$string = (string)$number;

$number = (int)$string;

$boolean = (bool)$integer;

Sometimes, it may not be clear at the first sight how the type
conversion (sometimes called type casting) will go and what
will be the result. The PHP manual has all the conversion
rules nicely documented.

Constants
Constants are similar to variables, holding information to be
accessed later, except that they are what they sound like—
constant. In other words, once you have defined a constant, its
value is set for the remainder of the program and cannot be
altered.

For example, you can use a constant to hold the location of
your server root (the folder with the main files of your
website). You would define such a constant like this:

define("ROOT_LOCATION", "/usr/local/www/");

Then, to read the contents of the variable, you just refer to it
like a regular variable (but it isn’t preceded by a dollar sign):

$directory = ROOT_LOCATION;

Now, whenever you need to run your PHP code on a different
server with a different folder configuration, you have only a
single line of code to change.

https://oreil.ly/SQhND

NOTE
The two things you have to remember about constants are that they
must not be prefaced with a $ (unlike regular variables) and that you
can define them only using the define function.

It is standard practice to use only uppercase letters for constant
variable names, especially if other people will also read your
code.

Predefined Constants
PHP comes ready-made with dozens of predefined constants
that you won’t generally use as a beginner. However, there are
a few—known as the magic constants—that you will find
useful. The names of the magic constants always have two
underscores at the beginning and two at the end so that you
won’t accidentally try to name one of your own constants with
a name that is already taken. These are detailed in Table 3-5.
The concepts referred to in the table will be introduced in
future chapters.

Table 3-5. PHP’s magic constants

Magic
constant Description

__LINE__ The current line number of the file.

__FILE__ The full path and filename of the file. If
used inside an include, the name of the
included file is returned. Some operating
systems allow aliases for directories,
called symbolic links; in __FILE__ these are
always changed to the actual directories.

__DIR__ The directory of the file. If used inside an
include, the directory of the included file is
returned. This is equivalent to dirname(__FIL
E__). This directory name does not have a
trailing slash unless it is the root directory.

__FUNCTION__ The function name. Returns the function
name as it was declared (case-sensitive).

__CLASS__ The class name. Returns the class name as
it was declared (case-sensitive).

__METHOD__ The class method name. The method name
is returned as it was declared (case-
sensitive).

__NAMESPACE__ The name of the current namespace. This
constant is defined at compile time (case-
sensitive).

One handy use of these variables is for debugging, when you
need to insert a line of code to see whether the program flow
reaches it:

echo "This is line " . __LINE__ . " of file " . __FILE__;

This prints the current program line in the current file
(including the path) to the web browser.

The Difference Between the echo and print
Commands
So far, you have seen the echo command used in a number of
ways to output text from the server to your browser. In some
cases, a string literal has been output. In others, strings have
first been concatenated or variables have been evaluated. I’ve
also shown output spread over multiple lines.

But there is an alternative to echo: print. The two commands
are quite similar, but print is a function-like construct that
takes a single parameter and has a return value (which is
always 1), whereas echo is purely a PHP language construct.
Since both commands are constructs, neither requires
parentheses.

By and large, the echo command will be a tad faster than
print, because it doesn’t set a return value. On the other hand,
because it isn’t implemented like a function, echo cannot be
used as part of a more complex expression, whereas print
can. Here’s an example to output whether the value of a
variable is TRUE or FALSE using print—something you could
not perform in the same manner with echo, because it would
display a Parse error message as the ternary operator
expects an expression that returns a value and while for
example echo "TRUE" doesn’t, print "TRUE" returns 1:

$b ? print "TRUE" : print "FALSE";

The question mark is simply a way of interrogating whether
variable $b is TRUE or FALSE. Whichever command is on the
left of the following colon is executed if $b is TRUE, whereas

the command to the right of the colon is executed if $b is
FALSE.

Generally, though, the examples in this book use echo, and I
recommend that you do so as well until you reach the point in
your PHP development that you discover the need for using
print.

Functions
Functions separate out and encapsulate sections of code that
perform a particular task more than once. For example, maybe
you often need to look up a date and return it in a certain
format. That would be a good example to turn into a function.
The code doing it might be only three lines long, but if you
have to paste it into your program a dozen times, you’re
making your program unnecessarily large and complex if you
don’t use a function. And if you decide to change the date
format later, putting it in a function means having to change it
in only one place.

Placing code into a function not only shortens your program
and makes it more readable but also adds extra functionality
(pun intended), because functions can be passed parameters to
make them perform differently. They can also return values to
the calling code.

To create a function, declare it as shown in Example 3-13.

Example 3-13. A simple function declaration

<?php

 function longdate($timestamp)

 {

 return date("l F jS Y", $timestamp);

 }

?>

This function returns a date in the format Sunday May 2nd
2027. Any number of parameters can be passed between the
initial parentheses; we have chosen to accept just one. The

curly braces enclose all the code that is executed when you
later call the function. Note that the first letter within the date
function call in this example is a lowercase letter L, not to be
confused with the number 1.

To output today’s date using this function, place the following
call in your code:

echo longdate(time());

If you need to print out the date 17 days ago, you now just
have to issue this call:

echo longdate(time() - 17 * 24 * 60 * 60);

which passes to longdate the current time less the number of
seconds since 17 days ago (17 days × 24 hours × 60 minutes ×
60 seconds).

Functions can also accept multiple parameters and return
multiple results, using techniques that I’ll introduce over the
following chapters.

Variable Scope
If you have a very long program, it’s possible that you could
start to run out of good variable names, but with PHP you can
decide the scope of a variable. In other words, you can, for
example, tell it that you want the variable $temp to be used
only inside a particular function and to forget it was ever used
when the function returns. In fact, this is the default scope for
PHP variables.

Alternatively, you could inform PHP that a variable is global
in scope and thus can be accessed by every other part of your
program.

Local variables

Local variables are variables that are created within, and can
be accessed only by, a function. They are generally temporary
variables used to store partially processed results prior to the
function’s return.

One set of local variables is the list of arguments to a function.
In “Functions”, we defined a function that accepted a
parameter named $timestamp. This is meaningful only in the
body of the function; you can’t get or set its value outside the
function.

For another example of a local variable, take another look at
the longdate function, which is modified slightly in
Example 3-14.

Example 3-14. An expanded version of the longdate function

<?php

 function longdate($timestamp)

 {

 $temp = date("l F jS Y", $timestamp);

 return "The date is $temp";

 }

?>

Here we have assigned the value returned by the date function
to the temporary variable $temp, which is then inserted into
the string returned by the function. As soon as the function
returns, the $temp variable and its contents disappear, as if
they had never been used at all.

To see the effects of variable scope making an outside variable
invisible inside a function, let’s look at some similar code in
Example 3-15. Here $temp has been created before we call the
longdate function.

Example 3-15. This attempt to access $temp in function
longdate will fail

<?php

 $temp = "The date is ";

 echo longdate(time());

 function longdate($timestamp)

 {

 return $temp . date("l F jS Y", $timestamp);

 }

?>

However, because $temp was neither created within the
longdate function nor passed to it as a parameter, longdate
cannot access it. Therefore, this code snippet outputs only the
date, not the preceding text. In fact, depending on how PHP is
configured, it may first display the error message Notice:
Undefined variable: temp, something you don’t want your
users to see. The reason for this is, by default, variables
created within a function are local to that function, and
variables created outside of any functions can be accessed only
by nonfunction code.

Some ways to repair Example 3-15 appear in Examples 3-16
and 3-17.

Example 3-16. Rewriting to refer to $temp within its local
scope fixes the problem

<?php

 $temp = "The date is ";

 echo $temp . longdate(time());

 function longdate($timestamp)

 {

 return date("l F jS Y", $timestamp);

 }

?>

Example 3-16 moves the reference to $temp out of the
function. The reference appears in the same scope where the
variable was defined.

Example 3-17. An alternative solution: passing $temp as an
argument

<?php

 $temp = "The date is ";

 echo longdate($temp, time());

 function longdate($text, $timestamp)

 {

 return $text . date("l F jS Y", $timestamp);

 }

?>

The solution in Example 3-17 passes $temp to the longdate
function as an extra argument. longdate reads it into a
temporary variable that it creates called $text and outputs the
desired result.

NOTE
Forgetting the scope of a variable is a common programming error, so
remembering how variable scope works will help you debug some
quite obscure problems. Suffice it to say that unless you have declared
a variable otherwise, its scope is limited to being local: either to the
current function or to the code outside of any functions, depending on
whether it was first created or accessed inside or outside a function.

Global variables
In some cases you need a variable to have global scope,
because you want all your code to be able to access it. Also,
some data may be large and complex, and you don’t want to
keep passing it as arguments to functions.

To access variables from global scope, add the keyword
global. Let’s assume that you have a way of logging your
users in to your website and want all your code to know
whether it is interacting with a logged-in user or a guest. One
way to do this is to use the global keyword before a variable,
such as $IS_LOGGED_IN:

global $IS_LOGGED_IN;

Now your login function simply has to set that variable to 1
upon a successful login attempt or 0 upon failure. Because the
scope of the variable is set to global, every line of code in your
program can access it.

You should use variables given global access with caution,
though. I recommend that you create them only when you
absolutely cannot find another way of achieving the result you
desire. In general, programs that are broken into small parts
and segregated data are less buggy and easier to maintain. If
you have a thousand-line program (and some day you will) in
which you discover that a global variable has the wrong value,
how long will it take you to find the code that set it
incorrectly?

Also, if you have too many variables with global scope, you
run the risk of using one of those names again locally, or at
least thinking you have used it locally, when in fact it has
already been declared as global. All manner of strange bugs
can arise from such situations.

NOTE
I generally adopt the convention of making all variable names that
require global access uppercase (just as it’s recommended that
constants should be uppercase, except constants are not prefixed with
$) so that I can see at a glance the scope of a variable.

Static variables
In “Local variables”, I mentioned that the value of a local
variable is wiped out when the function ends. If a function
runs many times, it starts with a fresh copy of the variable, and
the previous setting has no effect.

Here’s an interesting case. What if you have a local variable
inside a function that you don’t want any other parts of your
code to have access to, but you would also like to keep its
value for the next time the function is called? Why? Perhaps
because you want a counter to track how many times a
function is called. The solution is to declare a static variable,
as shown in Example 3-18.

Example 3-18. A function using a static variable

<?php

 function test()

 {

 static $count = 0;

 echo $count;

 $count++;

 }

?>

Here, the very first line of the function test creates a static
variable called $count and initializes it to a value of 0. The
next line outputs the variable’s value; the final one increments
it.

The next time the function is called, because $count has
already been declared, the first line of the function is skipped.
Then the previously incremented value of $count is displayed
before the variable is again incremented.

If you plan to use static variables, you should note that you
cannot assign the result of an expression in their definitions.
They can be initialized only with predetermined values (see
Example 3-19). Generally, however, like global variables,
static variables make functions less deterministic, meaning
that the function can have a different output given the same
input, and they are best avoided in preference for functions
with no side effects like changing a static variable.

Example 3-19. Allowed and disallowed static variable
declarations

<?php

 static $int = 0; // Allowed

 static $int = 1 + 2; // Correct (as of PHP 5.6)

 static $int = sqrt(144); // Disallowed

?>

Superglobal variables
Several predefined variables are also available. These are
known as superglobal variables, which means they are
provided by the PHP environment but are global within the
program, accessible absolutely everywhere.

These superglobals contain lots of useful information about
the currently running program and its environment (see
Table 3-6). They are structured as associative arrays, a topic
discussed in Chapter 6.

Table 3-6. PHP’s superglobal variables

Superglobal
name Contents

$GLOBALS All variables that are currently defined in
the global scope of the script. The variable
names are the keys of the array.

$_SERVER Information such as headers, paths, and
locations of scripts. The entries in this
array are created by the web server, and
there is no guarantee that every web server
will provide any or all of these.

$_GET Variables passed to the current script via
the HTTP GET method.

$_POST Variables passed to the current script via
the HTTP POST method.

$_FILES Items uploaded to the current script via the
HTTP POST method.

$_COOKIE Variables passed to the current script via
HTTP cookies.

$_SESSION Session variables available to the current
script.

$_REQUEST Contents of information passed from the
browser; by default, $_GET, $_POST, and $_COO
KIE.

$_ENV Variables passed to the current script via
the environment method.

All of the superglobals (except for $GLOBALS) are named with
a single initial underscore and only capital letters; therefore,
you should avoid naming your own variables in this manner to
avoid potential confusion.

To illustrate how you use them, let’s look at a common
example. Among the many nuggets of information supplied by
superglobal variables is the URL of the page that referred the
user to the current web page. This referring page information
can be accessed like this:

$came_from = $_SERVER['HTTP_REFERER'];

It’s that simple. Oh, and if the user came straight to your web
page, such as by typing its URL directly into a browser,
$came_from will be set to an empty string.

DIFFERENCE BETWEEN
SUPERGLOBALS AND CONSTANTS

Superglobals are regular variables that have the full scope of a
program during runtime, are visible and usable everywhere, whereas
constants, while also visible inside functions, have no scope
whatsoever, because they are accessed early on at compile time and
“baked” as fixed values into the runtime code before any scope is
created.

Superglobals and security
A word of caution is in order before you start using
superglobal variables, because they are often used by hackers
trying to find exploits to break into your website. What they
do is load up $_POST, $_GET, or other superglobals with
malicious code, such as Unix or MySQL commands that can
damage or display sensitive data if you naively access them.

Therefore, you should always sanitize superglobals before
using them. One way to do this is via the PHP htmlentities
function, which converts all characters into HTML entities.
For example, less-than and greater-than characters (< and >)
are transformed into the strings < and > so that they are

rendered harmless, as are all quotes and backslashes, and so
on.

Therefore, a much better way to access $_SERVER (and other
superglobals) is:

$came_from = htmlentities($_SERVER['HTTP_REFERER']);

WARNING
Using the htmlentities function for sanitizing is an important
practice in any circumstance where user or other third-party data is
being processed for output, not just with superglobals.

This chapter has provided you with a solid introduction to
using PHP. In Chapter 4, you’ll start using what you’ve
learned to build expressions and control program flow—in
other words, do some actual programming.

But before moving on, I recommend that you test yourself
with some (if not all) of the following questions to ensure that
you have fully digested the contents of this chapter.

Questions
1. What tag is used to invoke PHP to start interpreting

program code? And what is the short form of the tag?

2. What are the two types of comment tags?

3. Which character must be placed at the end of every
PHP statement?

4. Which symbol is used to preface all PHP variables?

5. What can a variable store?

6. What is the difference between $variable = 1,
$variable == 1, and $variable === 1?

7. Why is an underscore allowed in variable names
($current_user), whereas hyphens are not

($current-user)?

8. Are variable names case-sensitive?

9. Can you use spaces in variable names?

10. How do you convert one variable type to another (say,
a string to a number)?

11. What is the difference between ++$j and $j++?

12. Are the operators && and and interchangeable?

13. How can you create a multiline echo or assignment?

14. Can you redefine a constant?

15. How do you escape a quotation mark?

16. What is the difference between the echo and print
commands?

17. What is the purpose of functions?

18. How can you make a variable accessible to all parts
of a PHP program?

19. If you generate data within a function, what are a
couple of ways to convey the data to the rest of the
program?

20. What is the result of combining a string with a
number?

See “Chapter 3 Answers” in the Appendix A for the answers to
these questions.

Chapter 4. Expressions
and Control Flow in PHP

Chapter 3 introduced several topics in passing that this chapter
covers more fully, such as making choices (branching) and
creating complex expressions. In Chapter 3, I wanted to focus
on the most basic syntax and operations in PHP, but I couldn’t
avoid touching on more advanced topics. Now I can fill in the
background that you need to use these powerful PHP features
properly.

In this chapter, you will get a thorough grounding in how PHP
programming works in practice and how to control the flow of
the program.

Expressions
Let’s start with the most fundamental part of any programming
language: expressions.

An expression is a combination of values, variables, operators,
and functions that results in a value. It’s familiar to anyone
who has studied algebra. Here’s an example:

y = 3 (|2x| + 4)

Which in PHP would be:

$y = 3 * (abs(2 * $x) + 4);

The value returned (y in this mathematical statement, or $y in
the PHP code) can be a number, a string, or a Boolean value
(named after George Boole, a 19th-century English
mathematician and philosopher). By now, you should be

familiar with the first two value types, but I’ll explain the
third.

TRUE or FALSE?
A basic Boolean value can be either TRUE or FALSE. For
example, the expression 20 > 9 (20 is greater than 9) is TRUE,
and the expression 5 == 6 (5 is equal to 6) is FALSE. (You can
combine such operations using other classic Boolean operators
such as AND, OR, and XOR, which are covered later in this
chapter.)

NOTE
Note that I am using uppercase letters for the names TRUE and FALSE.
This is because they are predefined constants in PHP. You can use the
lowercase versions if you prefer, as they are also predefined.

PHP doesn’t actually print the predefined constants if you ask
it to do so as in Example 4-1. For each line, the example prints
out a letter followed by a colon and a predefined constant.
Only strings can be printed in PHP, and conversion rules have
been defined for other types, like numbers or Boolean values.
When converting to string, PHP arbitrarily assigns a string
value of "1" to TRUE, so 1 is displayed after a: when the
example runs. Even more mysteriously, the line starting
with b: doesn’t print 0 as you may expect. That’s because
during the conversion, FALSE is converted to an empty string
"". The constant FALSE is different than NULL, another
predefined constant that denotes nothing, even though both are
converted to an empty string when printed.

Example 4-1. Outputting the values of TRUE and FALSE

// test2.php

echo "a: [" . TRUE . "]
";

echo "b: [" . FALSE . "]
";

The
 tags are there to create line breaks and thus separate
the output into two lines in HTML. Here is the output:

a: [1]

b: []

Turning to Boolean expressions, Example 4-2 shows some
simple expressions: the two I mentioned earlier, plus a couple
more.

Example 4-2. Four simple Boolean expressions

echo "a: [" . (20 > 9) . "]
";

echo "b: [" . (5 == 6) . "]
";

echo "c: [" . (1 == 0) . "]
";

echo "d: [" . (1 == 1) . "]
";

The output from this code is:

a: [1]

b: []

c: []

d: [1]

By the way, in some languages FALSE may be defined as 0 or
even –1, so it’s worth checking on its definition in each
language you use. Luckily, you normally don’t have to worry
about what TRUE and FALSE look like internally.

Literals and Variables
These are the most basic elements of programming and the
building blocks of expressions. A literal simply means
something that evaluates to itself, such as the number 73 or the
string "Hello". A variable, which as we’ve already seen has a
name beginning with a dollar sign, evaluates to the value that
has been assigned to it. The simplest expression is just a single
literal or variable, because both return a value.

Example 4-3 shows two literals and two variables, all of which
return values, albeit of different types.

Example 4-3. Literals and variables

$myname = "Brian";

$myage = 37;

echo "a: " . 73 . "
"; // Numeric literal

echo "b: " . "Hello" . "
"; // String literal

echo "c: " . $myname . "
"; // String variable

echo "d: " . $myage . "
"; // Numeric variable

ABOUT LITERALS AND NON-LITERALS
The difference between a literal and a non-literal is that if you assign a
literal to a variable, the variable will have the same value as the literal,
even if you assign it repeatedly. However, if you assign a function
output to a variable, for example, the function can have a different
output each time it is called, making the variable content non-literal.

And, as you’d expect, you see a return value from all of these
in the following output:

a: 73

b: Hello

c: Brian

d: 37

In conjunction with operators, it’s possible to create more
complex expressions that evaluate to useful results.

Programmers combine expressions with other language
constructs, such as the assignment operators we saw earlier, to
form statements. Example 4-4 shows two statements. The first
assigns the result of the expression 366 - $day_number to the
variable $days_to_new_year, and the second outputs a
friendly message only if the expression $days_to_new_year
< 30 evaluates to TRUE.

Example 4-4. An expression and a statement

$days_to_new_year = 366 - $day_number; // Expression

if ($days_to_new_year < 30)

{

 echo "Not long now till new year"; // Statement

}

Operators
PHP offers a lot of powerful operators of different types—
arithmetic, string, logical, assignment, comparison, and more
(see Table 4-1).

Table 4-1. PHP operator types

Operator Description Example

Arithmetic Basic mathematics $a + $b

Array Array union $a + $b

Assignment Assign values $a = $b + 23

Bitwise Manipulate bits
within bytes

12 ^ 9

Comparison Compare two
values

$a < $b

Execution Execute contents
of backticks

`ls -al`

Increment/decrement Add or subtract 1 $a++

Logical Boolean $a and $b

String Concatenation $a . $b

Each operator takes a different number of operands:

Unary operators, such as incrementing ($a++) or
negation (!$a), take a single operand.

Binary operators, which represent the bulk of PHP
operators (including addition, subtraction,
multiplication, and division), take two operands.

The one ternary operator, which takes the form expr
? x : y, requires three operands. It’s a terse, single-
line if statement that returns x if expr is TRUE and y
if expr is FALSE.

ABOUT EXECUTION OPERATORS
Although the execution operators are powerful, you should avoid
using them unless strictly necessary and you know precisely what you
are doing, because you could potentially expose a massive
vulnerability in your project.

Operator Precedence
If all operators had the same precedence, they would be
processed in the order in which they are encountered (from left
to right in English). In fact, many operators do have the same
precedence. Take a look at Example 4-5.

Example 4-5. Three equivalent expressions

1 + 2 + 3 - 4 + 5 // 7

2 - 4 + 5 + 3 + 1 // 7

5 + 2 - 4 + 1 + 3 // 7

Here you will see that although the numbers (and their
preceding operators) have been moved around, the result of
each expression is the value 7, because the plus and minus
operators have the same precedence. We can try the same
thing with multiplication and division (see Example 4-6).

Example 4-6. Three expressions that are also equivalent

1 * 2 * 3 / 4 * 5 // 7.5

2 / 4 * 5 * 3 * 1 // 7.5

5 * 2 / 4 * 1 * 3 // 7.5

Here the resulting value is always 7.5. But things change
when we mix operators with different precedences in an
expression, as in Example 4-7.

Example 4-7. Three expressions using operators of mixed
precedence

1 + 2 * 3 - 4 * 5 // Without precedence would be 25

2 - 4 * 5 * 3 + 1 // Without precedence would be -29

5 + 2 - 4 + 1 * 3 // Without precedence would be 12

If there were no operator precedence, these three expressions
would evaluate to 25, –29, and 12, respectively. But because
multiplication and division take precedence over addition and
subtraction, the expressions are evaluated as if there were
parentheses around these parts of the expressions, just like
mathematical notation (see Example 4-8).

Example 4-8. Three expressions showing implied parentheses

1 + (2 * 3) - (4 * 5) // With precendence: -13

2 - (4 * 5 * 3) + 1 // With precendence: -57

5 + 2 - 4 + (1 * 3) // With precendence: 6

PHP evaluates the subexpressions within parentheses first to
derive the semi-completed expressions in Example 4-9.

Example 4-9. After evaluating the subexpressions in
parentheses

1 + (6) - (20) // With precendence: -13

2 - (60) + 1 // With precendence: -57

5 + 2 - 4 + (3) // With precendence: 6

The final results of these expressions are –13, –57, and 6,
respectively (quite different from the results of 25, –29, and 12
had there been no operator precedence).

Of course, you can override the default operator precedence by
inserting your own parentheses and forcing whatever order
you want (see Example 4-10).

Example 4-10. Forcing left-to-right evaluation

((1 + 2) * 3 - 4) * 5 // With forced precedence: 25

(2 - 4) * 5 * 3 + 1 // With forced precedence: -29

(5 + 2 - 4 + 1) * 3 // With forced precedence: 12

With parentheses correctly inserted, we now see the values 25,
–29, and 12, respectively.

Table 4-2 lists PHP’s operators in order of precedence from
high to low.

Table 4-2. Precedence of PHP operators (high to low)

Operator(s) Type

() Parentheses

++ -- Increment/decrement

! Logical

* / % Arithmetic

+ - . Arithmetic and string

<< >> Bitwise

< <= > >= <> Comparison

== != === !== Comparison

& Bitwise (and references)

^ Bitwise

| Bitwise

&& Logical

|| Logical

? : Ternary

= += -= *= /= .= %= &= != ^= <<= >>

=
Assignment

and Logical

xor Logical

or Logical

The order in this table is not arbitrary but carefully designed so
that the most common and intuitive precedences are the ones
you can get without parentheses. For instance, you can
separate two comparisons with an and or or and get what
you’d expect.

Associativity
We’ve been looking at processing expressions from left to
right, except where operator precedence is in effect. But some
operators require processing from right to left, and this
direction of processing is called the operator’s associativity.
For some operators, there is no associativity.

Associativity (as detailed in Table 4-3) becomes important in
cases in which you do not explicitly force precedence, so you
need to be aware of the default actions of operators.

Table 4-3. Operator associativity

Operator Description Associativity

< <= >= == != ===

!== <>
Comparison None

! Logical NOT Right

~ Bitwise NOT Right

++ -- Increment and
decrement

Right

(int) Cast to an integer Right

(double) (float)

(real)
Cast to a floating-
point number

Right

(string) Cast to a string Right

(array) Cast to an array Right

(object) Cast to an object Right

@ Inhibit error reporting Right

= += -= *= /= Assignment Right

.= %= &= |= ^= <<=

>>=
Assignment Right

+ Addition and unary
plus

Left

- Subtraction and
negation

Left

* Multiplication Left

/ Division Left

Operator Description Associativity

% Modulus Left

. String concatenation Left

<< >> & ^ | Bitwise Left

?: Ternary Left

|| && and or xor Logical Left

, Separator Left

For example, let’s look at the assignment operator in
Example 4-11, where three variables are all set to the value 0.

Example 4-11. A multiple-assignment statement

<?php

 $level = $score = $time = 0;

?>

This multiple assignment is possible only if the rightmost part
of the expression is evaluated first and then processing
continues in a right-to-left direction.

NOTE
As a newcomer to PHP, you should avoid the potential pitfalls of
operator associativity by always nesting your subexpressions within
parentheses to force the order of evaluation. This will also help other
programmers who have to maintain your code to understand what is
happening.

Relational Operators
Relational operators answer questions such as “Does this
variable have a value of zero?” and “Which variable has a
greater value?” These operators test two operands and return a

Boolean result of either TRUE or FALSE. There are three types
of relational operators: equality, comparison, and logical.

Equality operators

As we’ve seen, the equality operator is == (two equals signs).
It is important not to confuse it with the = (single equals sign)
assignment operator. In Example 4-12, the first statement
assigns a value and the second tests it for equality.

Example 4-12. Assigning a value and testing for equality

$month = "March";

if ($month == "April") echo "A quarter of a year has passed";

As you see, by returning either TRUE or FALSE, the equality
operator enables you to test for conditions using, for example,
an if statement. But that’s not the whole story, because PHP is
a loosely typed language. If the two operands of an equality
expression are of different types, PHP will convert them to
whatever type makes the best sense to it. The identity operator,
which consists of three equals signs in a row, can be used to
compare items without doing conversion.

For example, any strings composed entirely of numbers will
be converted to numbers whenever compared with a number.
In Example 4-13, $a and $b are two different strings, and we
might therefore expect neither of the if statements to output a
result.

Example 4-13. The equality and identity operators

$a = "1000";

$b = "+1000";

if ($a == $b) echo "1";

if ($a === $b) echo "2";

However, if you run the example, you will see that it outputs
the number 1, which means that the first if statement

evaluated to TRUE. This is because both strings were first
converted to numbers, and 1000 is the same numerical value
as +1000. In contrast, the second if statement uses the identity
operator, so it compares $a and $b as strings, sees that they are
different, and thus doesn’t output anything.

As with forcing operator precedence, whenever you have any
doubt about how PHP will convert operand types, you can use
the identity operator to turn this behavior off. And although the
equality operator == looks useful in the previous example, it’s
the identity operator === that’s recommended for comparisons
especially in any new code to reduce risk of unintended
behavior from type conversions.

In the same way that you can use the equality operator to test
for operands being equal, you can test for them not being
equal using !=, the inequality operator. In Example 4-14,
which is a rewrite of Example 4-13, the equality and identity
operators have been replaced with their inverses.

Example 4-14. The inequality and not-identical operators

$a = "1000";

$b = "+1000";

if ($a != $b) echo "1";

if ($a !== $b) echo "2";

And, as you might expect, the first if statement does not
output the number 1, because the code is asking whether $a
and $b are not equal to each other numerically.

Instead, this code outputs the number 2, because the second if
statement is asking whether $a and $b are not identical to each
other in their actual string type, and the answer is TRUE; they
are not the same.

Comparison operators

Using comparison operators, you can test for more than just
equality and inequality. PHP also gives you > (is greater than),
< (is less than), >= (is greater than or equal to), and <= (is less
than or equal to) to play with. Example 4-15 shows these in
use.

Example 4-15. The four comparison operators

$a = 2; $b = 3;

if ($a > $b) echo "$a is greater than $b
";

if ($a < $b) echo "$a is less than $b
";

if ($a >= $b) echo "$a is greater than or equal to $b
";

if ($a <= $b) echo "$a is less than or equal to $b
";

In this example, where $a is 2 and $b is 3, the output is:

2 is less than 3

2 is less than or equal to 3

Try this example yourself, altering the values of $a and $b, to
see the results. Try setting them to the same value and see
what happens.

Logical operators
Logical operators produce true or false results and therefore
are also known as Boolean operators. There are four of them
(see Table 4-4).

Table 4-4. The logical operators

Logical
operator Description

AND TRUE if both operands are TRUE

OR TRUE if either operand is TRUE

XOR TRUE if one of the two operands is TRUE

! TRUE if operand is FALSE, or FALSE if operand
is TRUE (NOT operator)

You can see these operators used in Example 4-16. Note that
the ! symbol is required by PHP in place of NOT. Furthermore,
the operators can be lowercase or uppercase (as in the case of
or in this example, which is in lowercase rather than
uppercase).

Example 4-16. The logical operators in use

$a = 1; $b = 0;

echo ($a AND $b) . "
";

echo ($a or $b) . "
";

echo ($a XOR $b) . "
";

echo !$a . "
";

Line by line, this example outputs nothing, 1, 1, and nothing,
meaning that only the second and third echo statements
evaluate as TRUE. (Remember that NULL—or nothing—
represents a value of FALSE.) This is because the AND statement
requires both operands to be TRUE for it to return a value of
TRUE, while the fourth statement performs a NOT on the value
of $a, turning it from TRUE (a value of 1) to FALSE. If you wish
to experiment with this, try out the code, giving $a and $b
varying values of 1 and 0.

NOTE
When coding, remember that AND and OR have lower precedence than
the other versions of the operators, && and ||.

The OR operator can cause unintentional problems in if
statements, because the second operand will not be evaluated
if the first is evaluated as TRUE. In Example 4-17, the function
getnext will never be called if $finished has a value of 1.

Example 4-17. A statement using the OR operator

if ($finished == 1 OR getnext() == 1) exit;

If you need getnext to be called at each if statement, you
could rewrite the code as in Example 4-18.

Example 4-18. The if...OR statement modified to ensure
calling of getnext

$gn = getnext();

if ($finished == 1 OR $gn == 1) exit;

In this case, the code executes the getnext function and stores
the value returned in $gn before executing the if statement.
While this has now ensured that getnext is called as required,
if $finished equals 1 then the value in $gn will not be tested
due to the or operator.

NOTE
Another solution is to switch the two clauses to make sure that
getnext is executed, as it will then appear first in the expression.

Table 4-5 shows all the possible variations of using the logical
operators. You should also note that !TRUE equals FALSE, and
!FALSE equals TRUE.

Conditionals
Conditionals alter program flow. They enable you to ask
questions about certain things and respond to the answers you
get in different ways. Conditionals are central to creating
dynamic web pages—the goal of using PHP in the first place
—because they make it easy to render different output each
time a page is viewed.

I’ll present three basic conditionals in this section: the if
statement, the switch statement, and the ? operator. In
addition, looping conditionals (which we’ll get to shortly)
execute code over and over until a condition is met.

The if Statement
One way of thinking about program flow is to imagine it as a
single-lane highway that you are driving along. It’s pretty
much a straight line, but now and then you encounter various
signs telling you where to go.

In the case of an if statement, imagine encountering a detour
sign that you have to follow if a certain condition is TRUE. If
so, you drive off and follow the detour until you return to the

Table 4-5. All possible PHP logical expressions

Inputs Operators and results

a b AND OR

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

main road and continue on your way in your original direction.
Or, if the condition isn’t TRUE, you ignore the detour and carry
on driving (see Figure 4-1).

Figure 4-1. Program flow is like a single-lane highway

The contents of the if condition can be any valid PHP
expression, including tests for equality, comparison
expressions, tests for 0 and NULL, and even function calls
(either to built-in functions or to ones that you write).

The actions to take when an if condition is TRUE are generally
placed inside curly braces ({ }). You can but should not
ignore the braces even if you have only a single statement to
execute, because if you always use curly braces, you’ll avoid
having to hunt down difficult-to-trace bugs, such as when you
add an extra line to a condition and it doesn’t get evaluated
due to the lack of braces.

NOTE
A notorious security vulnerability known as the “goto fail” bug
haunted the Secure Sockets Layer (SSL) code in Apple’s products for
many years because a programmer had forgotten the curly braces
around an if statement, causing a function to sometimes report a
successful connection when that was not the case. This allowed a
malicious attacker to get a secure certificate accepted when it should
have been rejected. If in doubt, place braces around your if
statements, although for brevity and clarity, and where the code is
small and the intention clear and obvious, some examples in this book
do omit the braces for single statements.

In Example 4-19, imagine it is the end of the month and all
your bills have been paid, so you are performing some bank
account maintenance.

Example 4-19. An if statement with curly braces

if ($bank_balance < 100)

{

 $money = 1000;

 $bank_balance += $money;

}

In this example, you are checking your balance to see whether
it is less than $100 (or whatever your currency is). If so, you
pay yourself $1,000 and then add it to the balance. (If only
making money were that simple!)

If the bank balance is $100 or greater, the conditional
statements are ignored and the program flow skips to the next
line (not shown).

In this book, opening curly braces generally start on a new
line. Some people like to place the first curly brace to the right
of the conditional expression; others start a new line with it.
Either of these is fine, because PHP allows you to set out your
whitespace characters (spaces, newlines, and tabs) any way
you choose. However, you will find your code easier to read
and debug if you indent each level of conditionals with a tab.

The else Statement
Sometimes when a conditional is not TRUE, you may not want
to continue on to the main program code immediately but to
do something else instead. This is where the else statement
comes in. With it, you can set up a second detour on your
highway, as in Figure 4-2.

With an if...else statement, the first conditional statement
is executed if the condition is TRUE. But if it’s FALSE, the
second one is executed. One of the two choices must be

executed. Under no circumstance can both (or neither) be
executed. Example 4-20 shows the use of the if...else
structure.

Figure 4-2. Highway now has an if detour and an else detour

Example 4-20. An if...else statement with curly braces

if ($bank_balance < 100)

{

 $money = 1000;

 $bank_balance += $money;

}

else

{

 $savings += 50;

 $bank_balance -= 50;

}

In this example, if you’ve ascertained that you have $100 or
more in the bank, the else statement is executed, placing
some of this money into your savings account.

As with the if statements, curly braces are always
recommended for the else statement as well. First, they make
the code easier to understand. Second, they let you easily add
more statements to the branch later.

The elseif Statement
There are also times when you want one of a number of
different possibilities to occur, based upon a sequence of
conditions. You can achieve this using the elseif statement.
As you might imagine, it is like an else statement, except that
you place a further conditional expression prior to the
conditional code. In Example 4-21, you can see a complete
if...elseif...else construct.

Example 4-21. An if...elseif...else statement with curly
braces

if ($bank_balance < 100)

{

 $money = 1000;

 $bank_balance += $money;

}

elseif ($bank_balance > 200)

{

 $savings += 100;

 $bank_balance -= 100;

}

else

{

 $savings += 50;

 $bank_balance -= 50;

}

In the example, an elseif statement has been inserted
between the if and else statements. It checks whether your
bank balance exceeds $200 and, if so, decides that you can
afford to save $100 this month.

Although I’m starting to stretch the metaphor a bit, you can
imagine this as a multiway set of detours (see Figure 4-3).

NOTE
An else statement closes either an if...else or an if...
els ei f... el se statement. You can leave out a final else if it is not
required, but you cannot have one before an elseif; you also cannot
have an elseif before an if statement.

Figure 4-3. The highway with if, elseif, and else detours

You may have as many elseif statements as you like. But as
the number of elseif statements increases, you are advised to
consider a switch statement if it fits your needs. We’ll look at
that next.

The switch Statement
The switch statement is useful where one variable, or the
result of an expression, can have multiple values, each of
which should trigger a different activity.

For example, consider a PHP-driven menu system that passes
a single string to the main menu code according to what the
user requests. Let’s say the options are Home, About, News,

Login, and Links, and we set the variable $page to one of
these, according to the user’s input.

If we write the code for this using if...elseif...else, it
might look like Example 4-22.

Example 4-22. A multiline if...elseif...else statement

if ($page == "Home") echo "You selected Home";

elseif ($page == "About") echo "You selected About";

elseif ($page == "News") echo "You selected News";

elseif ($page == "Login") echo "You selected Login";

elseif ($page == "Links") echo "You selected Links";

else echo "Unrecognized selection";

If we use a switch statement, the code might look like
Example 4-23.

Example 4-23. A switch statement

switch ($page)

{

 case "Home":

 echo "You selected Home";

 break;

 case "About":

 echo "You selected About";

 break;

 case "News":

 echo "You selected News";

 break;

 case "Login":

 echo "You selected Login";

 break;

 case "Links":

 echo "You selected Links";

 break;

}

As you can see, $page is mentioned only once at the start of
the switch statement. Thereafter, the case command checks
for matches. When one occurs, the matching conditional
statement is executed. Of course, in a real program you would
have code here to display or jump to a page, rather than simply
telling the user what was selected.

NOTE
With switch statements, you do not use curly braces inside case
commands. Instead, they commence with a colon and end with the
break statement. However, the entire list of cases in the switch
statement is enclosed in a set of curly braces.

Breaking out

If you wish to break out of the switch statement because a
condition has been fulfilled, use the break command. This
command tells PHP to exit the switch and jump to the
following statement.

If you were to leave out the break commands in Example 4-23
and the case of Home evaluated to be TRUE, all five cases would
then be executed due to what is known as fall-through. Or, if
$page had the value News, all the case commands from then
on would execute. This is deliberate and allows for some
advanced programming, but generally you should remember to
issue a break command every time a set of case conditionals
has finished executing. In fact, leaving out the break
statement is a common error.

Default action

A typical requirement in switch statements is to fall back on a
default action if none of the case conditions are met. For
example, in the case of the menu code in Example 4-23, you
could add the code in Example 4-24 immediately before the
final curly brace.

Example 4-24. A default statement to add to Example 4-23

default:

 echo "Unrecognized selection";

 break;

This replicates the effect of the else statement in Example 4-
22.

Although a break command is not required here because the
default is the final substatement and program flow will
automatically continue to the closing curly brace, should you
decide to move the default statement higher up (not
generally recommended practice), it would definitely need a
break command to prevent program flow from dropping into
the following statements. Generally, the safest practice is to
always include the break command.

Alternative syntax

If you prefer, you can replace the first curly brace in a switch
statement with a single colon and the final curly brace with an
endswitch command, as in Example 4-25. However, this
approach is not commonly used and is mentioned here only in
case you encounter it in third-party code.

Example 4-25. Alternate switch statement syntax

switch ($page):

 case "Home":

 echo "You selected Home";

 break;

 // etc

 case "Links":

 echo "You selected Links";

 break;

endswitch;

The ? (or Ternary) Operator
One way of avoiding the verbosity of if and else statements
is to use the more compact ternary operator, ?, which is
unusual in that it takes three operands rather than the typical
two.

We briefly discussed this in Chapter 3 about the difference
between the print and echo statements as an example of an
operator type that works well with print but not echo.

The ? operator is passed an expression that it must evaluate,
along with two expressions to execute: one for when the
expression evaluates to TRUE, the other for when it is FALSE.
Example 4-26 shows code we might use for writing a warning
about the fuel level of a car to its digital dashboard.

Example 4-26. Using the ? operator

echo $fuel <= 1 ? "Fill tank now" : "There's enough fuel";

In this statement, if there is one gallon or less of fuel (in other
words, $fuel is set to 1 or less), the string Fill tank now is
returned to the preceding echo statement. Otherwise, the string
There's enough fuel is returned. You can also assign the
value returned in a ? statement to a variable (see Example 4-
27).

Example 4-27. Assigning a ? conditional result to a variable

$enough = $fuel <= 1 ? FALSE : TRUE;

Here, $enough will be assigned the value TRUE only when
there is more than a gallon of fuel; otherwise, it is assigned the
value FALSE.

If you find the ? operator confusing, you are free to stick to if
statements, but you should be familiar with the operator
because you’ll see it in other people’s code. It can be hard to
read, because it often mixes multiple occurrences of the same
variable. For instance, code such as the following is quite
popular:

$saved = $saved >= $new ? $saved : $new;

If you take it apart carefully, you can figure out what this code
does:

$saved = // Set the value of $saved to...

 $saved >= $new // Check $saved against $new

 ? // Yes, comparison is true...

 $saved // ... so assign the current value of

$saved

 : // No, comparison is false...

 $new; // ... so assign the value of $new

It’s a concise way to keep track of the largest value that you’ve
seen as a program progresses. You save the largest value in
$saved and compare it to $new each time you get a new value.
Programmers familiar with the ? operator find it more
convenient than if statements for such short comparisons.
When not used for writing compact code, it is typically used to
make some decision inline, such as when you are testing
whether a variable is set before passing it to a function.

Looping
One of the great things about computers is that they can repeat
tasks quickly and tirelessly. You might want a program to
repeat the same sequence of code again and again until
something happens, such as a user inputting a value or the
program reaching a natural end. PHP’s loop structures provide
the perfect way to do this.

To picture how this works, look at Figure 4-4. It is much the
same as the highway metaphor used to illustrate if statements,
except the detour also has a loop section that—once a vehicle
has entered it—can be exited only under the right program
conditions.

Figure 4-4. Imagining a loop as part of a program highway layout

while Loops
Let’s turn the digital car dashboard in Example 4-26 into a
loop that continuously checks the fuel level as you drive, using
a while loop (Example 4-28).

Example 4-28. A while loop

$fuel = 10;

while ($fuel > 1)

{

 // Keep driving...

 echo "There's enough fuel";

}

Actually, you might prefer to keep a green light lit rather than
output text, but the point is that whatever positive indication
you wish to make about the fuel level is placed inside the
while loop. By the way, if you try this example for yourself,
note that it will keep printing the string until you exit the
program.

NOTE
As with if statements, curly braces are required to hold the statements
inside the while statements, unless there’s only one.

For another example of a while loop that displays the 12 times
table, see Example 4-29.

Example 4-29. A while loop to print the 12 times table

$count = 1;

while ($count <= 12)

{

 echo "$count times 12 is " . $count * 12 . "
";

 ++$count;

}

Here the variable $count is initialized to a value of 1, and then
a while loop starts with the comparative expression $count
<= 12. This loop will continue executing until the variable is
greater than 12. The output from this code is:

1 times 12 is 12

2 times 12 is 24

3 times 12 is 36

and so on...

Inside the loop, a string is printed along with the value of
$count multiplied by 12. For neatness, this is followed with a

 tag to force a new line. Then $count is incremented,
ready for the final curly brace that tells PHP to return to the
start of the loop.

At this point, $count is again tested to see whether it is greater
than 12. It isn’t, but it now has the value 2, and after another
11 times around the loop, it will have the value 13. When that
happens, the code within the while loop is skipped and
execution passes to the code following the loop, which, in this
case, is the end of the program.

If the ++$count statement (which equally could have been
$count++) had not been there, this loop would be like the first
one in this section. It would never end, and only the result of 1
* 12 would be printed over and over.

But there is a much neater way to write this loop. Take a look
at Example 4-30.

Example 4-30. A shortened version of Example 4-29

$count = 0;

while (++$count <= 12)

 echo "$count times 12 is " . $count * 12 . "
";

In this example, it was possible to move the ++$count
statement from the statements inside the while loop into the
conditional expression of the loop. What now happens is that
PHP encounters the variable $count at the start of each
iteration of the loop and, noticing that it is prefaced with the
increment operator, first increments the variable and only then
compares it to the value 12. You can therefore see that $count
now has to be initialized to 0, not 1, because it is incremented
as soon as the loop is entered. If you keep the initialization at
1, only results between 2 and 12 will be output.

MULTILINE STATEMENTS
In the preceding example, no braces are placed around the code
following the while statement, and therefore only that line will be
executed. If you wish to add more commands at this point then ensure
curly braces are used to surround them.

do…while Loops
A slight variation of the while loop is the do...while loop,
used when you want a block of code to be executed at least
once and made conditional only after that. Example 4-31
shows a modified version of the code for the 12 times table
that uses such a loop.

Example 4-31. A do...while loop for printing the 12 times
table

$count = 1;

do

 echo "$count times 12 is " . $count * 12 . "
";

while (++$count <= 12);

Notice how we are back to initializing $count to 1 (rather than
0) because of the loop’s echo statement being executed before
we have an opportunity to increment the variable. Other than
that, though, the code looks pretty similar.

Of course, if you have more than a single statement inside a
do...while loop, remember to use curly braces, as in
Example 4-32.

Example 4-32. Expanding Example 4-31 to use curly braces

$count = 1;

do {

 echo "$count times 12 is " . $count * 12;

 echo "
";

} while (++$count <= 12);

for Loops
The final kind of loop statement, the for loop, combines the
abilities to set up variables as you enter the loop, test for
conditions while iterating loops, and modify variables after
each iteration.

Example 4-33 shows how to write the multiplication table
program with a for loop.

Example 4-33. Outputting the 12 times table from a for loop

for ($count = 1 ; $count <= 12 ; ++$count)

 echo "$count times 12 is " . $count * 12 . "
";

See how the code has been reduced to a single for statement
containing a single conditional statement? Here’s what is
going on. Each for statement takes three parameters:

An initialization expression

A condition expression

A modification expression

These are separated by semicolons like this: for (expr1 ;
expr2 ; expr3). At the start of the first iteration of the loop,
the initialization expression is executed. In the case of the
times table code, $count is initialized to the value 1. Then,
each time around the loop, the condition expression (in this
case, $count <= 12) is tested, and the loop is entered only if
the condition is TRUE. Finally, at the end of each iteration, the
modification expression is executed. In the case of the times
table code, the variable $count is incremented.

All this structure neatly removes any requirement to place the
controls for a loop within its body, freeing it up just for the
statements you want the loop to perform.

Remember to use curly braces with a for loop if it contains
more than one statement, as in Example 4-34.

Example 4-34. The for loop from Example 4-33 with added
curly braces

for ($count = 1 ; $count <= 12 ; ++$count)

{

 echo "$count times 12 is " . $count * 12;

 echo "
";

}

Let’s compare when to use for and while loops. The for loop
is explicitly designed around a single value that changes
regularly. Usually you have a value that increments, as when
you are passed a list of user choices and want to process each
choice in turn. But you can transform the variable any way
you like. A more complex form of the for statement even lets
you perform multiple operations in each of the three
parameters:

for ($i = 1, $j = 1 ; $i + $j < 10 ; $i++ , $j++)

{

 // ...

}

That’s complicated and not recommended for first-time users,
though. The key is to distinguish commas from semicolons.
The three parameters must be separated by semicolons. Within
each parameter, multiple statements can be separated by
commas. Thus, in the previous example, the first and third
parameters each contain two statements:

$i = 1, $j = 1 // Initialize $i and $j

$i + $j < 10 // Terminating condition

$i++, $j++ // Modify $i and $j at the end of each iteration

The main thing to take from this example is that you must
separate the three parameter sections with semicolons, not
commas (which should be used only to separate statements
within a parameter section).

So, when is a while statement more appropriate than a for
statement? When your condition doesn’t depend on a simple,
regular change to a variable. For instance, if you want to check
for some special input or error and end the loop when it
occurs, use a while statement.

Breaking Out of a Loop
Just as you saw how to break out of a switch statement, you
can also break out of a for loop (or any loop) using the same
break command. This step can be necessary when, for
example, one of your statements returns an error and the loop
cannot continue executing safely. One case in which this might
occur is when writing a file returns an error, possibly because
the disk is full (see Example 4-35).

Example 4-35. Writing a file using a for loop with error
trapping

$fp = fopen("text.txt", 'wb');

for ($j = 0 ; $j < 100 ; ++$j)

{

 $written = fwrite($fp, "data");

 if ($written == FALSE) break;

}

fclose($fp);

This is the most complicated piece of code that you have seen
so far, but you’re ready for it. We’ll look into the file-handling
commands in Chapter 7, but for now all you need to know is
that the first line opens the file text.txt for writing in binary
mode and then returns a pointer to the file in the variable $fp,
which is used later to refer to the open file.

The loop then iterates 100 times (from 0 to 99), writing the
string data to the file. After each write, the variable $written
is assigned a value by the fwrite function representing the
number of characters correctly written. But if there is an error,
the fwrite function assigns the value FALSE.

The behavior of fwrite makes it easy for the code to check
the variable $written to see whether it is set to FALSE and, if
so, to break out of the loop to the following statement that
closes the file.

The break command is even more powerful than you might
think, because if you have loops nested more than one layer
deep that you need to break out of, you can follow the break
command with a number to indicate how many levels to break
out of:

break 2;

The continue Statement
The continue statement is a little like a break statement,
except that it instructs PHP to stop processing the current
iteration of the loop and move right to its next iteration. So,

instead of breaking out of the whole loop, PHP exits only the
current iteration.

This approach can be useful in cases where you know there is
no point continuing execution within the current loop and you
want to prevent an error from occurring by moving right along
to the next iteration of the loop. In Example 4-36, a continue
statement is used to prevent a division-by-zero error from
being issued when the variable $j has a value of 0.

Example 4-36. Trapping division-by-zero errors using
continue

$j = 11;

while ($j > -10)

{

 $j--;

 if ($j == 0) continue;

 echo (10 / $j) . "
";

}

For all values of $j between 10 and –10, with the exception of
0, the result of calculating 10 divided by $j is displayed. But
for the case of $j being 0, the continue statement is issued,
and execution skips immediately to the next iteration of the
loop.

Implicit and Explicit Casting
PHP is a loosely typed language that allows you to declare a
variable and its type simply by using it. It also automatically
converts values from one type to another whenever required.
This is called implicit casting.

However, at times PHP’s implicit casting may not be what you
want. In Example 4-37, note that the inputs to the division are
integers. By default, PHP converts the output to floating point
so it can give the most precise value—4.66 recurring.

Example 4-37. This expression returns a floating-point number

$a = 56;

$b = 12;

$c = $a / $b;

echo $c;

But what if we wanted $c to be an integer instead? There are
various ways to achieve this, one of which is to force the result
of $a / $b to be cast to an integer value using the integer cast
type (int), like this:

$c = (int) ($a / $b);

This is called explicit casting. Note that to ensure that the
value of the entire expression is cast to an integer, we place the
expression within parentheses. Otherwise, only the variable $a
would be cast to an integer—a pointless exercise, as the
division by $b would still have returned a floating-point
number.

You can explicitly cast variables and literals to the types
shown in Table 4-6.

Table 4-6. PHP’s cast types

Cast type Description

(int) (integer) Cast to an integer by dropping the
decimal portion.

(bool) (boolean) Cast to a Boolean.

(float) (double)

(real)
Cast to a floating-point number.

(string) Cast to a string.

(array) Cast to an array.

(object) Cast to an object.

NOTE
PHP also has built-in functions that do the same thing. For example, to
obtain an integer value, you could use the intval function. But those
functions often do more than just casting; for example, the intval
function supports specifying the base for the conversion. Usually,
simple casting as mentioned previously is enough to change the type.

PHP Modularization
Because PHP is a programming language, and the output from
it can be completely different for each user, it’s possible for an
entire website to run from a single PHP web page. Each time
the user clicks something, the details can be sent back to the
same web page, which decides what to do next according to
the various cookies and/or other session details it may have
stored.

But although it is possible to build an entire website this way,
it’s not recommended, because your source code will grow and

grow and start to become unwieldy, as it has to account for
every possible action a user could take.

Instead, it’s much more sensible to split your website
development into different parts, or modules, that are
dynamically called up (or linked) as required. For example,
one distinct process is signing up for a website, along with all
the checking this entails to validate an email address,
determine whether a username is already taken, and so on.

A second module might be one that logs users in before
handing them off to the main part of your website. Then you
might have a messaging module with the facility for users to
leave comments, a module containing links and useful
information, another to allow uploading of images, and more.

As long as you have created a way to track your user through
your website by means of cookies or session variables (both of
which we’ll look at more closely in later chapters), you can
split up your website into sensible sections of PHP code, each
one self-contained, and therefore treat yourself to a much
easier future, developing each new feature and maintaining old
ones. If you have a team, different people can work on
different modules so that each programmer needs to learn just
one part of the program thoroughly. In Chapter 5, you’ll learn
to use functions and objects to create reusable code
components; but before that, let’s repeat what you’ve learned
in this chapter.

Questions
1. When printing data that contains TRUE and FALSE

constants, what’s displayed instead of those two
constants and why?

2. What are the simplest two forms of expressions?

3. What is the difference between unary, binary, and
ternary operators?

4. What is the best way to force your own operator
precedence?

5. What is meant by operator associativity?

6. When would you use the === (identity) operator?

7. Name the three conditional statement types.

8. What command can you use to skip the current
iteration of a loop and move on to the next one?

9. What’s the difference between the for loop and
the while loop?

10. How do if and while statements interpret conditional
expressions of different data types?

See “Chapter 4 Answers” in the Appendix A for the answers to
these questions.

Chapter 5. PHP Functions
and Objects

The basic requirements of any programming language include
somewhere to store data, a means of directing program flow
with statements like if and else, and a few bits and pieces
such as expression evaluation, file management, and text
output. PHP has all these to make life easier. But even with all
these in your toolkit, programming can be clumsy and tedious,
especially if you have to rewrite portions of very similar code
each time you need them.

That’s where functions and objects come in. As you might
guess, a function is a set of statements that performs a
particular function and—optionally—returns a value. You can
pull out a section of code that you have used more than once,
place it into a function, and call the function by name when
you want to call the code.

In PHP functions have many advantages over contiguous,
inline code. For example, they:

Involve less typing

Reduce syntax and other programming errors

Decrease the loading time of program files

Accept arguments and can therefore be used for
general as well as specific cases

Are easier to write tests for

Object-oriented programming takes this concept a step further.
A class is like a template that allows you to create objects,
which encapsulate one or more functions and the data they
use.

In this chapter, you’ll learn all about using functions, from
defining and calling them to passing arguments. With that
knowledge under your belt, you’ll start creating functions and
using them in your own objects (where they will be referred to
as methods).

NOTE
It is now highly unusual (and definitely not recommended) to use any
version of PHP lower than 5.4. Therefore, this chapter assumes this
release is the bare minimum version you will be working with, and I
would strongly recommend you stick with a minimum of version
8.2 (the version supplied with AMPPS as described in Chapter 2).
Should you need to use a different version such as the newer 8.x
releases, you can install one from the AMPPS control panel, as
described in Chapter 2.

PHP Functions
PHP comes with hundreds of ready-made, built-in functions,
making it a very rich language. To use a function, call it by
name. For example, you can see the date function in action
here:

echo date('l'); // Displays the day of the week

The parentheses tell PHP that you’re referring to a function.
Otherwise, it thinks you’re referring to a constant or variable.

Functions can take any number of arguments, including zero.
For example, phpinfo, as shown next, displays lots of
information about the current installation of PHP and requires
no argument:

phpinfo();

The result of calling this function can be seen in Figure 5-1.

WARNING
The phpinfo function is extremely useful for obtaining information
about your current PHP installation, but that information could also be
very useful to potential hackers. Therefore, never leave a call to this
function in any production code.

Figure 5-1. The output of PHP’s built-in phpinfo function

Some of the built-in functions that use one or more arguments
appear in Example 5-1.

Example 5-1. Three string functions

<?php

 echo strrev(' .dlrow olleH'); // Reverse string

 echo str_repeat('Hip ', 2); // Repeat string

 echo strtoupper('hooray!'); // String to uppercase

?>

This example uses three string functions to output the
following text:

Hello world. Hip Hip HOORAY!

As you can see, the strrev function reversed the order of
characters in the string, str_repeat repeated the string "Hip

" twice (as required by the second argument), and strtoupper
converted "hooray!" to uppercase.

Defining a Function
The general syntax for a function is:

function function_name(parameter, parameter 2...)

{

 // Statements

}

The first line of the syntax indicates:

A definition starts with the word function.

A name follows, which must start with a letter or
underscore, followed by any number of letters,
numbers, or underscores; the same requirements are
used for variable naming.

The parentheses are required.

One or more parameters, separated by commas, are
optional.

Function names are case-insensitive, so all of the following
strings can refer to the print function: PRINT, Print, and
PrInT, but whichever style you or your supervisor sets up
should be adhered to for consistency.

The opening curly brace starts the statements that will execute
when you call the function; a matching curly brace must close
it. These statements may include one or more return
statements, which force the function to cease execution and
return to the calling code. If a value is attached to the return
statement, the calling code can retrieve it, as we’ll see next.

Returning a Value

Let’s look at a simple function to convert a person’s full name
to lowercase and then capitalize the first letter of each part of
the name.

We’ve already seen an example of PHP’s built-in strtoupper
function in Example 5-1. For our current function, we’ll use its
counterpart, strtolower:

$lowered = strtolower('aNY # of Letters and Punctuation you

WANT');

echo $lowered;

The output of this experiment is:

any # of letters and punctuation you want

We don’t want names all lowercase, though; we want the first
letter of each part of the sentence capitalized. (We’re not going
to deal with subtle cases such as Mary-Ann or Jo-En-Lai for
this example.) Luckily, PHP also provides a ucfirst function
that sets the first character of a string to uppercase:

$ucfixed = ucfirst('any # of letters and punctuation you want');

echo $ucfixed;

The output is:

Any # of letters and punctuation you want

Now we can do our first bit of program design: to get a word
with its initial letter capitalized, we call strtolower on the
string first and then ucfirst. The way to do this is to nest a
call to strtolower within ucfirst. Let’s see why, because
it’s important to understand the order in which code is
evaluated.

Say you make a simple call to the print function:

print(5-8);

The expression 5-8 is evaluated first, and the output is –3. (As
you saw in Chapter 4, PHP converts the result to a string in
order to display it.) If the expression contains a function, that
function is evaluated as well:

print(abs(5-8));

PHP is doing several things in executing that short statement:

1. Evaluate 5-8 to produce –3.

2. Use the abs function to turn –3 into 3.

3. Convert the result to a string and output it using the
print function.

This all works because PHP evaluates each element from the
inside out. The same procedure is in operation when we call
the following:

ucfirst(strtolower('aNY # of Letters and Punctuation you WANT'))

PHP passes our string to strtolower and then to ucfirst,
producing (as we’ve already seen when we played with the
functions separately):

Any # of letters and punctuation you want

Now let’s define a function (shown in Example 5-2) that takes
three names and makes each one lowercase, with an initial
capital letter.

Example 5-2. Cleaning up a full name

<?php

 function fix_names($n1, $n2, $n3)

 {

 $n1 = ucfirst(strtolower($n1));

 $n2 = ucfirst(strtolower($n2));

 $n3 = ucfirst(strtolower($n3));

 return $n1 . ' ' . $n2 . ' ' . $n3;

 }

 echo fix_names('WILLIAM', 'henry', 'gatES');

?>

You may well find yourself writing this type of code, because
users often leave their Caps Lock key on, accidentally insert
capital letters in the wrong places, and even forget capitals
altogether. The output from this example is:

William Henry Gates

Returning an Array
We just saw a function returning a single value. There are also
ways of getting multiple values from a function.

The first method is to return them within an array. As you saw
in Chapter 3, an array is like a bunch of variables stuck
together in a row. Example 5-3 shows how you can use an
array to return function values.

Example 5-3. Returning multiple values in an array

<?php

 $names = fix_names('WILLIAM', 'henry', 'gatES');

 echo $names[0] . ' ' . $names[1] . ' ' . $names[2];

 function fix_names($n1, $n2, $n3)

 {

 $n1 = ucfirst(strtolower($n1));

 $n2 = ucfirst(strtolower($n2));

 $n3 = ucfirst(strtolower($n3));

 return array($n1, $n2, $n3);

 }

?>

This method has the benefit of keeping all three names
separate, rather than concatenating them into a single string, so
you can refer to any user simply by first or last name without
having to extract either name from the returned string.

Returning Global Variables
Another way, although not recommended, to give a function
access to an externally created variable that is not passed as an
argument is by declaring it to have global access from within
the function. The global keyword followed by the variable
name gives every part of your code full access to it (see
Example 5-4).

Example 5-4. Returning values in global variables

<?php

 $a1 = 'WILLIAM';

 $a2 = 'henry';

 $a3 = 'gatES';

 function fix_names()

 {

 global $a1; $a1 = ucfirst(strtolower($a1));

 global $a2; $a2 = ucfirst(strtolower($a2));

 global $a3; $a3 = ucfirst(strtolower($a3));

 }

 echo $a1 . ' ' . $a2 . ' ' . $a3 . '
';

 fix_names();

 echo $a1 . ' ' . $a2 . ' ' . $a3;

?>

Now you don’t have to pass parameters to the function, and it
doesn’t have to accept them. Once declared, these variables
retain global access and are available to the rest of your
program, including its functions. You may spot this approach
in legacy code but is strongly not recommended for any new
development as it introduces a hidden side effect to the
fix_names function that is not clear. It also makes testing the
function much harder and safe renaming of the variables
almost impossible.

Recap of Variable Scope
A quick reminder of what you know from Chapter 3:

Local variables are accessible just from the part of
your code where you define them. If a variable is
inside a function, only that function can access the
variable, and its value is lost when the function
returns.

Global variables are accessible from all parts of your
code, whether within or outside of functions.

Static variables are accessible only within the
function that declared them but retain their value over
multiple calls.

Including and Requiring Files
As you progress in your use of PHP programming, you are
likely to start building a library of functions that you think you
will need again. You’ll also probably start using libraries
created by other programmers.

There’s no need to copy and paste these functions into your
code. You can save them in separate files and use commands
to pull them in. There are two commands to perform this
action: include and require.

The include Statement
Using include, you can tell PHP to fetch a particular file and
load all its contents. It’s as if you pasted the included file into
the current file at the insertion point. Example 5-5 shows how
you would include a file called library.php.

Example 5-5. Including a PHP file

<?php

 include "library.php";

 // Your code goes here

?>

Using include_once
Each time you issue the include directive, it includes the
requested file again, even if you’ve already inserted it. For
instance, suppose that library.php contains a lot of useful
functions, so you include it in your file, but you also include
another library that includes library.php. Through nesting,
you’ve inadvertently included library.php twice. This will
produce error messages, because you’re trying to define the
same constant or function multiple times. So, you should use
include_once instead (see Example 5-6).

Example 5-6. Including a PHP file only once

<?php

 include_once "library.php";

 // Your code goes here

?>

Then, any further attempts to include the same file (with
include or include_once) will be ignored. To determine
whether the requested file has already been executed, the
absolute filepath is matched after all relative paths are resolved
(to their absolute paths) and the file is found in your include
path.

NOTE
In general, it’s best to stick with include_once and ignore the basic
include statement. That way, you will never have the problem of files
being included multiple times.

Using require and require_once
A potential problem with include and include_once is that
PHP will only attempt to include the requested file. Program
execution continues even if the file is not found.

When it is absolutely essential to include a file, require it.
For the same reasons I gave for using include_once, I

recommend that you stick with require_once whenever you
need to require a file (see Example 5-7).

Example 5-7. Requiring a PHP file only once

<?php

 require_once "library.php";

 // Your code goes here

?>

PHP Version Compatibility
PHP is in an ongoing process of development, and there are
multiple versions. If you need to check whether a particular
function is available to your code, you can use the
function_exists function, which checks all predefined and
user-created functions.

Example 5-8 checks for array_combine, a function specific to
only some versions of PHP.

Example 5-8. Checking for a function’s existence

<?php

 if (function_exists("array_combine"))

 {

 echo "Function exists";

 }

 else

 {

 echo "Function does not exist - better write our own";

 }

?>

Using code such as this, you can take advantage of features in
newer versions of PHP and yet still have your code run on
earlier versions where the newer features are unavailable, as
long as you replicate any features that are missing (called
polyfills). Your functions may be slower than the built-in ones,
but at least your code will be much more portable.

PHP Objects
In much the same way that functions represent a huge increase
in programming power over the early days of computing,
object-oriented programming (OOP) takes the use of functions
in a different direction.

Once you get the hang of condensing reusable bits of code into
functions, it’s not that great a leap to consider bundling the
functions and their data into objects.

Let’s take a social networking site that has many parts. One
handles all user functions—that is, code to enable new users to
sign up and existing users to modify their details. In standard
PHP, you might create a few functions to handle this and
embed some calls to the MySQL database to keep track of all
the users.

To create an object to represent the current user, you could
create a class, perhaps called User, that would contain all the
code required for handling users and all the variables needed
for manipulating the data within the class. Then, whenever you
need to manipulate a user’s data, you could simply create a
new object with the User class.

You could treat this new object as if it were the actual user. For
example, you could pass the object a name, password, and
email address; ask it whether such a user already exists; and, if
not, have it create a new user with those attributes. You could
even have an instant messaging object or one for managing
whether two users are friends.

Terminology
When creating an object-oriented program, you need to design
a composite of data and code called a class. Each new object
based on this class is called an instance (or occurrence) of that
class.

The data associated with an object is called its properties; the
functions it uses are called methods. In defining a class, you
supply the names of its properties and the code for its
methods. See Figure 5-2 for a jukebox metaphor for an object.
Think of the CDs that it holds in the carousel as its properties;
the method of playing them is to press buttons on the front
panel. There is also a slot for inserting coins (the method used
to activate the object) and a laser disc reader (the method used
to retrieve the music, or properties, from the CDs), or software
to download and play an online file.

When you’re creating objects, it is best to use encapsulation,
or writing a class in such a way that only its methods can be
used to manipulate its properties. In other words, you deny
outside code direct access to its data. The methods you supply
are known as the object’s interface.

Figure 5-2. A jukebox: a great example of a self-contained object

This approach makes debugging easy: you have to fix faulty
code only within a class. Additionally, when you want to
upgrade a program, if you have used proper encapsulation and
maintained the same interface, you can simply develop new

replacement classes, debug them fully, and then swap them in
for the old ones. If they don’t work, you can swap the old ones
back in to immediately fix the problem before further
debugging the new classes.

Once you have created a class, you may find that you need
another class that is similar to it but not quite the same. The
quick and easy thing to do is to define a new class using
inheritance. When you do this, your new class has all the
properties of the one it has inherited from. The original class is
now called the parent (or occasionally the superclass), and the
new one is the subclass (or derived class).

In our jukebox example, if you invent a new jukebox that can
play a video along with the music, you can inherit all the
properties and methods from the original jukebox superclass
and add some new properties (videos) and new methods (a
movie player).

An excellent benefit of this system is that if you improve the
speed or any other aspect of the superclass, its subclasses will
receive the same benefit. On the other hand, any change made
to the parent/superclass could break the subclass.

Declaring a Class
Before you can use an object, you must define a class with the
class keyword. Class definitions contain the class name
(which is case-insensitive), its properties, and its methods.
Example 5-9 defines the class User with two properties, which
are $name and $password (indicated by the public keyword
—see “Property and Method Scope”). It also creates a new
instance (called $object) of this class.

Example 5-9. Declaring a class and examining an object

<?php

 class User

 {

 public $name, $password;

 function save_user()

 {

 echo "Save User code goes here";

 }

 }

 $object = new User;

 print_r($object);

?>

Here I have also used an invaluable function called print_r.
It asks PHP to display information about a variable in human-
readable form. (The _r stands for human-readable.) In the
case of the new object $object, it displays this:

User Object

(

 [name] =>

 [password] =>

)

However, a browser compresses all the whitespace, so the
output in a browser is slightly harder to read (although you can
always display output within <pre> and </pre> tags to display
all the whitespace):

User Object ([name] => [password] =>)

In any case, the output says that $object is a user-defined
object that has the properties name and password.

Creating an Object
To create an object with a specified class, use the new
keyword, like this: $object = new Class. Here are a couple
of ways we could do this:

$object = new User;

$temp = new User('name', 'password');

On the first line, we create an instance of the User class and
assign it to a variable called $object. In the second line, we
provide arguments to the class constructor, a special method
explained later in the chapter, when we create the instance of
the User class and assign the instance to the variable $temp.

A class may require or prohibit arguments in its constructor; it
may also allow arguments without explicitly requiring them.

Accessing Objects
Let’s add a few lines to Example 5-9 and check the results.
Example 5-10 extends the previous code by setting object
properties and calling a method.

Example 5-10. Creating and interacting with an object

<?php

 $object = new User;

 print_r($object); echo "
";

 $object->name = "Joe";

 $object->password = "mypass";

 print_r($object); echo "
";

 $object->save_user();

 class User

 {

 public $name, $password;

 function save_user()

 {

 echo "Save User code goes here";

 }

 }

?>

As you can see, the syntax for accessing an object’s property is
$object->property. Likewise, you call a method like this:
$object->method().

You should note that the example property and method do
not have $ signs in front of them. If you were to preface them

with $ signs, the code would not work, as it would try to
reference the value inside a variable. For example, the
expression $object->$property would attempt to look up
the value assigned to a variable named $property (let’s say
that value is the string brown) and then attempt to reference
the property $object->brown. If $property is undefined, an
attempt to reference $object->NULL would occur and cause
an error.

When looked at using a browser’s View Source facility, the
output from Example 5-10 is:

User Object

(

 [name] =>

 [password] =>

)

User Object

(

 [name] => Joe

 [password] => mypass

)

Save User code goes here

Again, print_r shows its utility by providing the contents of
$object before and after property assignment. From now on,
I’ll omit print_r statements, but if you are working along
with this book on your development server, you can put some
in to see exactly what is happening.

You can also see that the code in the method save_user was
executed via the call to that method. It printed the string
reminding us to create some code.

NOTE
You can place functions and class definitions anywhere in your code,
before or after statements that use them. Generally, though, it is
considered good practice to place them in their own files, or in shorter
pieces of code where extra files are not required, toward the end of a
file.

Cloning Objects
Once you have created an object, it is passed by reference
when you pass it as a parameter. In the matchbox metaphor,
this is like keeping several threads attached to an object stored
in a matchbox so that you can follow any attached thread to
access it.

In other words, making object assignments does not copy
objects in their entirety; only a new reference to an existing
object is created. You’ll see how this works in Example 5-11,
where we define a very simple User class with no methods
and only the property name.

Example 5-11. Copying an object

<?php

 $object1 = new User();

 $object1->name = "Alice";

 $object2 = $object1;

 $object2->name = "Amy";

 echo "object1 name = " . $object1->name . "
";

 echo "object2 name = " . $object2->name;

 class User

 {

 public $name;

 }

?>

Here, we first create the object $object1 and assign the value
Alice to the name property. Then we create $object2,
assigning it the value of $object1, and assign the value Amy
just to the name property of $object2—or so we might think.
But this code outputs the following:

object1 name = Amy

object2 name = Amy

What has happened? Both $object1 and $object2 refer to
the same object, so changing the name property of $object2 to

Amy also sets that property for $object1.

To avoid this confusion, you can use the clone operator,
which creates a new instance of the class and copies the
property values from the original instance to the new instance.
Example 5-12 illustrates this usage.

Example 5-12. Cloning an object

<?php

 class User

 {

 public $name;

 }

 $object1 = new User();

 $object1->name = "Alice";

 $object2 = clone $object1;

 $object2->name = "Amy";

 echo "object1 name = " . $object1->name . "
";

 echo "object2 name = " . $object2->name;

?>

Voilà! The output from this code is what we initially wanted:

object1 name = Alice

object2 name = Amy

Constructors
When creating a new object, you can pass a list of arguments
to a special method within the class, called the constructor,
which initializes various object properties.

To do this you use the function name __construct (that is,
construct preceded by two underscore characters), as in
Example 5-13. The constructor in the example takes two
arguments $name and $password and initializes two properties
name and password. A special variable $this is used to set
the current object’s properties: the name property declared
as public $name is accessed as $this->name in the class
methods including the constructor.

Example 5-13. Creating a constructor method

<?php

 class User

 {

 public $name, $password;

 function __construct($name, $password)

 {

 $this->name = $name;

 $this->password = $password;

 }

 }

?>

Destructors
You also have the ability to create destructor methods, useful
for when code has made the last reference to an object or when
a script reaches the end. Example 5-14 shows how to create a
destructor method. The destructor can do clean-up such as
releasing a connection to a database or some other resource
that you reserved within the object. Because you reserved the
resource within the object, you have to release it here, or it
will stick around indefinitely. Many system-wide problems are
caused by programs reserving resources and forgetting to
release them.

Example 5-14. Creating a destructor method

<?php

 class User

 {

 function __destruct()

 {

 // Destructor code goes here

 }

 }

?>

Writing Methods
As you have seen, declaring a method is similar to declaring a
function, but there are a few differences. For example, method

names beginning with a double underscore (__) are reserved
(for example, __construct and __destruct).

You also have access to a special variable called $this, which
can be used to access the current object’s properties. To see
how it works, see Example 5-15, which contains a different
method from the User class definition called get_password.

Example 5-15. Using the variable $this in a method

<?php

 class User

 {

 public $name, $password;

 function get_password()

 {

 return $this->password;

 }

 }

?>

get_password uses the $this variable to access the current
object and then return the value of that object’s password
property. Note how the preceding $ of the property $password
is omitted when we use the -> operator. Leaving the $ in place
is a typical error you may run into, particularly when you first
use this feature.

Here’s how you would use the class defined in Example 5-15:

$object = new User;

$object->password = "secret";

echo $object->get_password();

This code prints the password secret.

Declaring Properties
It is not necessary to explicitly declare properties within
classes, as they can be implicitly defined when first used, but

this technique has been deprecated since PHP 8.2. To illustrate
this, in Example 5-16 the class User has no properties and no
methods but is legal code.

Example 5-16. Defining a property implicitly

<?php

 $object1 = new User();

 $object1->name = "Alice";

 echo $object1->name;

 class User {}

?>

This code correctly outputs the string Alice without a
problem, because PHP implicitly declares the property
$object1->name for you. But this kind of programming can
lead to bugs that are infuriatingly difficult to discover, because
name was declared from outside the class.

To help yourself and anyone else who will maintain your code,
I advise that you get into the habit of always declaring your
properties explicitly within classes. You’ll be glad you did.

Static Methods
You can define a method as static, which means that it is
called on a class, not on an object. A static method has no
access to any object properties and is created and accessed as
in Example 5-17.

Example 5-17. Creating and accessing a static method

<?php

 User::pwd_string();

 class User

 {

 static function pwd_string()

 {

 echo "Please enter your password";

 }

 }

?>

Note how we call the class itself, along with the static method,
using a double colon (also known as the scope resolution
operator), not ->. Static functions are useful for performing
actions relating to the class itself but not to specific instances
of the class. You can see another example of a static method in
Example 5-18.

NOTE
If you try to access $this->property, or other object properties from
within a static function, you will receive an error message.

Declaring Constants
In the same way that you can create a global constant with the
define function, you can define constants inside classes. The
generally accepted practice is to use uppercase letters to make
them stand out, as in Example 5-18.

Example 5-18. Defining constants within a class

<?php

 Translate::lookup();

 class Translate

 {

 const ENGLISH = 0;

 const SPANISH = 1;

 const FRENCH = 2;

 const GERMAN = 3;

 // ...

 static function lookup()

 {

 echo self::SPANISH;

 }

 }

?>

You can reference constants directly, using the self keyword
and double colon operator. Note that this code calls the class

directly, using the double colon operator at line 1, without
creating an instance of it first. As you would expect, the value
printed when you run this code is 1.

Outside of the class, you can access the constant directly by
the class name:

print_r(Translate::GERMAN);

Remember that once you define a constant, you can’t change
it.

Property and Method Scope
PHP provides three keywords for controlling the scope of
properties and methods (members):

public

Public members can be referenced anywhere, including by
other classes and instances of the object. This is the default
when variables are declared with the var or public
keywords, or when a variable is implicitly declared the
first time it is used.

The keywords var and public are interchangeable
because, although deprecated, var is retained for
compatibility with previous versions of PHP. Methods are
assumed to be public by default.

protected

These members can be referenced only by the object’s
class methods and those of any subclasses.

private

These members can be referenced only by methods within
the same class, not by subclasses.

Here’s how to decide which you need to use:

Use public when outside code should access this
member and extending classes should also inherit it.

Use protected when outside code should not access
this member but extending classes should inherit it.

Use private when outside code should not access
this member and extending classes also should not
inherit it.

Example 5-19 illustrates the use of these keywords.

Example 5-19. Changing property and method scope

<?php

 class Example

 {

 var $name = "Michael"; // Same as public but deprecated

 public $age = 23; // Public property

 protected $usercount; // Protected property

 private function admin() // Private method

 {

 // Admin code goes here

 }

 }

?>

Static Properties
Most data and methods apply to instances of a class. For
example, in a User class, you will want to do such things as
set a particular user’s password or check when the user has
been registered. These facts and operations apply separately to
each user and therefore use instance-specific properties and
methods.

But occasionally you’ll want to maintain data about a whole
class. For instance, to report how many users are registered,
you will store a variable that applies to the whole User class.
PHP provides static properties and methods for such data.

As shown briefly in Example 5-17, declaring members of a
class static makes them accessible without an instantiation
of the class. A property declared static cannot be directly
accessed within an instance of a class, but a static method can.

Example 5-20 defines a class called Test with a static
property and a public method.

Example 5-20. Defining a class with a static property

<?php

 $temp = new Test();

 echo "Test A: " . Test::$static_property . "
";

 echo "Test B: " . $temp->get_sp() . "
";

 echo "Test C: " . $temp->static_property . "
";

 class Test

 {

 static $static_property = "I'm static";

 function get_sp()

 {

 return self::$static_property;

 }

 }

?>

When you run this code, it returns the following output:

Test A: I'm static

Test B: I'm static

Notice: Undefined property: Test::$static_property

Test C:

This example shows that the property $static_property
could be directly referenced from the class itself via the double
colon operator in Test A. Also, Test B could obtain its value by
calling the get_sp method of the object $temp, created from
class Test. But Test C failed, because the static property
$static_property was not accessible to the object $temp.

Note how the method get_sp accesses $static_property
using the keyword self. This is how a static property or

constant can be directly accessed within a class.

Inheritance
Once you have written a class, you can derive subclasses from
it. This can save lots of painstaking code rewriting: you can
take a class similar to the one you need to write, extend it to a
subclass, and modify just the parts that are different. You
achieve this using the extends keyword.

USE INHERITANCE WITH CAUTION
Inheritance should be approached with caution and used sparingly. If
overused, it can make testing, refactoring, and reasoning more
difficult. A common error is to create a class (for example a Mailer
class) that extends the Database class because the Mailer class needs
the Database class. A better approach is class composition, where the
Mailer class uses, but does not extend, multiple other classes, like the
Database class, the Email class, and the User class. Objects created
from the other classes can be passed to the Mailer object as
constructor arguments or can be created in the constructor. Consider
inheritance a more advanced design pattern with some downsides to
factor in when deciding whether to use it.

In Example 5-21, the class Subscriber is declared a subclass
of User by means of the extends keyword.

Example 5-21. Inheriting and extending a class

<?php

 $object = new Subscriber;

 $object->name = "Fred";

 $object->password = "pword";

 $object->phone = "012 345 6789";

 $object->email = "fred@bloggs.com";

 $object->display();

 class User

 {

 public $name, $password;

 function save_user()

 {

 echo "Save User code goes here";

 }

 }

 class Subscriber extends User

 {

 public $phone, $email;

 function display()

 {

 echo "Name: " . $this->name . "
";

 echo "Pass: " . $this->password . "
";

 echo "Phone: " . $this->phone . "
";

 echo "Email: " . $this->email;

 }

 }

?>

The original User class has two properties, $name and
$password, and a method to save the current user to the
database. Subscriber extends this class by adding an
additional two properties, $phone and $email, and includes a
method of displaying the properties of the current object using
the variable $this, which refers to the current values of the
object being accessed. The output from this code is:

Name: Fred

Pass: pword

Phone: 012 345 6789

Email: fred@bloggs.com

The parent keyword
If you write a method in a subclass with the same name as one
in its parent class, its statements will override those of the
parent class. Sometimes this is not the behavior you want, and
you need to access the parent’s method. To do this, you can
use the parent operator, as in Example 5-22.

Example 5-22. Overriding a method and using the parent
operator

<?php

 $object = new Son;

 $object->test();

 $object->test2();

 class Dad

 {

 function test()

 {

 echo "[Class Dad] I am your Father
";

 }

 }

 class Son extends Dad

 {

 function test()

 {

 echo "[Class Son] I am Luke
";

 }

 function test2()

 {

 parent::test();

 }

 }

?>

This code creates a class called Dad and a subclass called Son
that inherits its properties and methods and then overrides the
method test. Therefore, when line 2 calls the method test,
the new method is executed. The only way to execute the
overridden test method in the Dad class is to use the parent
operator, as shown in function test2 of class Son. The code
outputs this:

[Class Son] I am Luke

[Class Dad] I am your Father

If you wish to ensure that your code calls a method from the
current class, you can use the self keyword, like this:

self::method();

Using self to call static methods is very common, but it is
rarely used to call the object ones. The difference between
using self and $this to call an object method is that if the
method would be overridden in a subclass and you’d call it
using the self keyword in the parent class, then the method

from the parent class would be called, not the overridden one,
unlike when you’d use $this to call it.

Subclass constructors
When you extend a class and declare your own constructor,
you should be aware that PHP will not automatically call the
constructor method of the parent class. If you want to be
certain that all initialization code is executed, subclasses
should always call the parent constructors, as in Example 5-23.

Example 5-23. Calling the parent class constructor

<?php

 $object = new Tiger();

 echo "Tigers have...
";

 echo "Fur: " . $object->fur . "
";

 echo "Stripes: " . $object->stripes;

 class Wildcat

 {

 public $fur; // Wildcats have fur

 function __construct()

 {

 $this->fur = "TRUE";

 }

 }

 class Tiger extends Wildcat

 {

 public $stripes; // Tigers have stripes

 function __construct()

 {

 parent::__construct(); // Call parent constructor first

 $this->stripes = "TRUE";

 }

 }

?>

This example takes advantage of inheritance in the typical
manner. The Wildcat class has created the property $fur,
which we’d like to reuse, so we create the Tiger class to
inherit $fur and additionally create another property,

$stripes. To verify that both constructors have been called,
the program outputs:

Tigers have...

Fur: TRUE

Stripes: TRUE

Final methods
When you wish to prevent a subclass from overriding a
superclass method, you can use the final keyword.
Example 5-24 shows how.

Example 5-24. Creating a final method

<?php

 class User

 {

 final function copyright()

 {

 echo "This class was written by Joe Smith";

 }

 }

?>

If you tried to override the copyright method in a subclass of
the User class, you’d get an error message saying you cannot
override the final method.

Private methods, except for the constructor, cannot use
the final keyword. It would make little sense as they are
never overridden by other classes.

Once you have digested the contents of this chapter, you
should have a strong feel for what PHP can do for you. You
should be able to use functions with ease and, if you wish,
write object-oriented code. In Chapter 6, we’ll complete our
initial exploration of PHP by looking at the workings of PHP
arrays, but first test your understanding of this chapter using
the following questions.

Questions
1. What is the main benefit of using a function?

2. How many values can a function return?

3. What is the difference between accessing a variable
by name and by reference?

4. What is the meaning of scope in PHP?

5. How can you incorporate one PHP file within
another?

6. How is an object different from a function?

7. How do you create a new object in PHP?

8. What syntax would you use to create a subclass from
an existing one?

9. How can you cause an object to be initialized when
you create it?

10. Why is it a good idea to explicitly declare properties
within a class?

See “Chapter 5 Answers” in the Appendix A for the answers to
these questions.

Chapter 6. PHP Arrays

In Chapter 3, I gave a very brief introduction to PHP’s arrays,
just enough for a little taste of their power. In this chapter, I’ll
show you many more things you can do with arrays, some of
which—if you have ever used a strongly typed language such
as C—may surprise you with their elegance and simplicity.

Not only do arrays remove the tedium of writing code to deal
with complicated data structures, but they also provide
numerous ways to access data while remaining amazingly fast.

Basic Access
We’ve already looked at arrays as if they were clusters of
matchboxes glued together. Another way to think of an array is
like a string of beads, with the beads representing variables
that can be numbers, strings, or even other arrays. They are
like bead strings because each element has its own location
and (with the exception of the first and last ones) each has
other elements on either side.

Some arrays are referenced by numeric indexes; others allow
alphanumeric identifiers. Built-in functions let you sort them,
add or remove sections, and walk through them to handle each
item through a special kind of loop. By placing one or more
arrays inside another, you can create arrays of two, three, or
any number of dimensions.

Numerically Indexed Arrays
Let’s assume that you’ve been tasked with creating a simple
website for a local office supply company and you’re currently
working on the section devoted to paper. One way to manage
the various items of stock in this category would be to place

them in a numeric array. You can see the simplest way of
doing so in Example 6-1.

Example 6-1. Adding items to an array

<?php

 $paper[] = "Copier";

 $paper[] = "Inkjet";

 $paper[] = "Laser";

 $paper[] = "Photo";

 print_r($paper);

?>

In this example, each time you assign a value to the array
$paper, the first empty location within that array is used to
store the value, and a pointer internal to PHP is incremented to
point to the next free location, ready for future insertions. The
familiar print_r function (which prints out the contents of a
variable, array, or object) is used to verify that the array has
been correctly populated. It prints out the following:

Array

(

 [0] => Copier

 [1] => Inkjet

 [2] => Laser

 [3] => Photo

)

The previous code also could have been written as shown in
Example 6-2, where the exact location of each item within the
array is specified. But, as you can see, that approach requires
extra typing and makes your code harder to maintain if you
want to insert supplies into or remove them from the array. So,
unless you wish to specify a different order, it’s better to let
PHP handle the actual location numbers.

Example 6-2. Adding items to an array using explicit locations

<?php

 $paper[0] = "Copier";

 $paper[1] = "Inkjet";

 $paper[2] = "Laser";

 $paper[3] = "Photo";

 print_r($paper);

?>

The output from these examples is identical, but you are not
likely to use print_r in a developed website, so Example 6-3
shows how you might print out the various types of paper the
website offers using a for loop.

Example 6-3. Adding items to an array and retrieving them

<?php

 $paper[] = "Copier";

 $paper[] = "Inkjet";

 $paper[] = "Laser";

 $paper[] = "Photo";

 for ($j = 0 ; $j < 4 ; ++$j)

 echo "$j: {$paper[$j]}
";

?>

This example prints out:

 0: Copier

 1: Inkjet

 2: Laser

 3: Photo

So far, you’ve seen a couple of ways you can add items to an
array and one way of referencing them. PHP offers many
more, which I’ll get to shortly. But first, we’ll look at another
type of array.

Associative Arrays
Keeping track of array elements by numeric index works just
fine but can require extra work in terms of remembering which
number refers to which product. It can also make code hard for
other programmers to follow.

This is where associative arrays come in. Using them, you can
reference the items in an array by name rather than by number.
Example 6-4 expands on the previous code by giving each
element in the array an identifying name and a longer, more
explanatory string value.

Example 6-4. Adding items to an associative array and
retrieving them

<?php

 $paper['copier'] = "Copier & Multipurpose";

 $paper['inkjet'] = "Inkjet Printer";

 $paper['laser'] = "Laser Printer";

 $paper['photo'] = "Photographic Paper";

 echo $paper['laser'];

?>

In place of a number (which doesn’t convey any useful
information, aside from the position of the item in the array),
each item now has a unique name that you can use to reference
it elsewhere, as with the echo statement, which simply prints
out Laser Printer. The names (copier, inkjet, and so on)
are called indexes or keys, and the items assigned to them
(such as Laser Printer) are called values.

This very powerful PHP feature is often used when you are
extracting information from XML and HTML. For example,
an HTML parser such as those used by a search engine could
place all the elements of a web page into an associative array
whose names reflect the page’s structure:

$html['title'] = "My web page";

$html['body'] = "... body of web page ...";

The program would also break down all the links found within
a page into another array, and all the headings and subheadings
into another. When you use associative rather than numeric
arrays, the code to refer to all of these items is easy to write
and debug.

NOTE
PHP’s associative arrays are similar to maps, dictionaries, or objects in
other languages.

Assignment Using the array Keyword
So far, you’ve seen how to assign values to arrays by adding
new items one at a time. Whether you specify keys, specify
numeric identifiers, or let PHP assign numeric identifiers
implicitly, this is a long-winded approach. A more compact
and faster assignment method uses the array keyword.
Example 6-5 shows both a numeric and an associative array
assigned using this method.

Example 6-5. Adding items to an array using the array
keyword

<?php

 $p1 = array("Copier", "Inkjet", "Laser", "Photo");

 echo "p1 element: " . $p1[2] . "
";

 $p2 = array('copier' => "Copier & Multipurpose",

 'inkjet' => "Inkjet Printer",

 'laser' => "Laser Printer",

 'photo' => "Photographic Paper");

 echo "p2 element: " . $p2['inkjet'] . "
";

?>

The first half of this snippet assigns the old, shortened product
descriptions to the array $p1. There are four items, so they will
occupy slots 0 through 3. Therefore, the echo statement prints
out:

p1 element: Laser

The second half assigns associative identifiers and
accompanying longer product descriptions to the array $p2
using the format key => value. The use of => is similar to the
regular = assignment operator, except that you are assigning a

value to an index and not to a variable. The index is then
linked with that value, unless it is assigned a new value. The
echo command therefore prints out:

p2 element: Inkjet Printer

You can verify that $p1 and $p2 are different types of array,
because both of the following commands, when appended to
the code, will cause an Undefined index or Undefined
offset error, as the array identifier for each is incorrect:

echo $p1['inkjet']; // Undefined index

echo $p2[3]; // Undefined offset

The foreach…as Loop
The creators of PHP have gone to great lengths to make the
language easy to use. So, not content with the loop structures
already provided, they added another one especially for arrays:
the foreach...as loop. Using it, you can step through all the
items in an array, one at a time, and do something with them.

The process starts with the first item and ends with the last
one, so you don’t even have to know how many items are in
an array. Example 6-6 shows how foreach...as can be used
to rewrite Example 6-3.

Example 6-6. Walking through a numeric array using
foreach...as

<?php

 $paper = array("Copier", "Inkjet", "Laser", "Photo");

 $j = 0;

 foreach($paper as $item)

 {

 echo "$j: $item
";

 ++$j;

 }

?>

When PHP encounters a foreach statement, it takes the first
item of the array and places it in the variable following the as
keyword; each time control flow returns to the foreach, the
next array element is placed in the as keyword. In this case,
the variable $item is set to each of the four values in turn in
the array $paper. Once all values have been used, execution
of the loop ends. The output from this code is exactly the same
as in Example 6-3.

Now let’s see how foreach works with an associative array in
Example 6-7, which is a rewrite of the second half of
Example 6-5.

Example 6-7. Walking through an associative array using
foreach...as

<?php

 $paper = array('copier' => "Copier & Multipurpose",

 'inkjet' => "Inkjet Printer",

 'laser' => "Laser Printer",

 'photo' => "Photographic Paper");

 foreach($paper as $item => $description)

 echo "$item: $description
";

?>

Remember that associative arrays do not require numeric
indexes, so the variable $j is not used in this example. Instead,
each item of the array $paper is fed into the key/value pair of
variables $item and $description, from which they are
printed out. The displayed result of this code is:

copier: Copier & Multipurpose

inkjet: Inkjet Printer

laser: Laser Printer

photo: Photographic Paper

There are some alternative ways to walk through an
associative array. I once used the list and each functions, but
each has since been removed from PHP. Luckily, it is possible
to write a replacement function, which I have named myEach,

to be used with the list function in conjunction with a while
loop, as in Example 6-8.

Example 6-8. Walking through an associative array using
myEach and list

<?php

 $paper = array('copier' => "Copier & Multipurpose",

 'inkjet' => "Inkjet Printer",

 'laser' => "Laser Printer",

 'photo' => "Photographic Paper");

 while (list($item, $description) = myEach($paper))

 echo "$item: $description
";

 function myEach(&$array) // Replacement for deprecated 'each'

function

 {

 $key = key($array);

 $result = ($key === null) ? false :

 [$key, current($array), 'key', 'value' =>

 current($array)];

 next($array);

 return $result;

 }

?>

In this example, a while loop is set up and will continue
looping until the myEach function returns a value of FALSE.
The myEach function acts like foreach in that it returns an
array containing a key/value pair from the array $paper and
then moves its built-in pointer to the next pair in that array.
When there are no more pairs to return, myEach returns FALSE.

Unlike with foreach, calling myEach modifies the internal
array pointer because it uses next, which is something you
should be aware of. You can spot the difference when you add
print_r(current($paper)); after both the foreach and
while loops. Using foreach to walk through arrays is more
common as it doesn’t have this side effect and is also
marginally faster.

The list function takes an array as its argument (in this case,
the key/value pair returned by the function myEach) and then
assigns the values of the array to the variables listed within
parentheses.

You can see how list works a little more clearly in
Example 6-9, where an array is created out of the two strings
Alice and Bob and then passed to the list function, which
assigns those strings as values to the variables $a and $b.

Example 6-9. Using the list function

<?php

 list($a, $b) = array('Alice', 'Bob');

 echo "a=$a b=$b";

?>

The output from this code is:

a=Alice b=Bob

Multidimensional Arrays
A simple design feature in PHP’s array syntax makes it
possible to create arrays of more than one dimension. In fact,
they can be as many dimensions as you like (although it’s a
rare application that goes beyond three).

That feature is the ability to include an entire array as a part of
another one and to be able to keep doing so, just like the old
rhyme by Augustus De Morgan, the British mathematician and
logician: “Big fleas have little fleas upon their backs to bite
’em. Little fleas have lesser fleas and so ad infinitum.”

Let’s look at how this works by extending the associative array
in the previous example; see Example 6-10.

Example 6-10. Creating a multidimensional associative array

<?php

 $products = array(

 'paper' => array(

 'copier' => "Copier & Multipurpose",

 'inkjet' => "Inkjet Printer",

 'laser' => "Laser Printer",

 'photo' => "Photographic Paper"),

 'pens' => array(

 'ball' => "Ball Point",

 'hilite' => "Highlighters",

 'marker' => "Markers"),

 'misc' => array(

 'tape' => "Sticky Tape",

 'glue' => "Adhesives",

 'clips' => "Paperclips"

)

);

 echo "<pre>";

 foreach($products as $section => $items)

 foreach($items as $key => $value)

 echo "$section:\t$key\t($value)
";

 echo "</pre>";

?>

To make things clearer now that the code is starting to grow,
I’ve renamed some of the elements. For example, because the
previous array $paper is now just a subsection of a larger
array, the main array is now called $products. Within this
array, there are three items—paper, pens, and misc—each of
which contains another array with key/value pairs.

If necessary, these subarrays could contain even further arrays.
For example, under ball there might be many different types
and colors of ballpoint pens available in the online store. But
for now, I’ve restricted the code to a depth of just two.

Once the array data has been assigned, I use a pair of nested
foreach...as loops to print out the various values. The outer
loop extracts the main sections from the top level of the array,

and the inner loop extracts the key/value pairs for the
categories within each section.

As long as you remember that each level of the array works
the same way (it’s a key/value pair), you can easily write code
to access any element at any level.

The echo statement uses the PHP escape character \t, which
outputs a tab. Although tabs are not normally significant to the
web browser, I let them be used for layout through the
<pre>...</pre> tags, which tell the web browser to format
the text as preformatted and monospaced, and not to ignore
whitespace characters such as tabs and line feeds. The output
from this code looks like this:

paper: copier (Copier & Multipurpose)

paper: inkjet (Inkjet Printer)

paper: laser (Laser Printer)

paper: photo (Photographic Paper)

pens: ball (Ball Point)

pens: hilite (Highlighters)

pens: marker (Markers)

misc: tape (Sticky Tape)

misc: glue (Adhesives)

misc: clips (Paperclips)

You can directly access a particular element of the array by
using square brackets:

echo $products['misc']['glue'];

This outputs the value Adhesives.

You can also create numeric multidimensional arrays that are
accessed directly by indexes rather than by alphanumeric
identifiers. Example 6-11 creates the board for a chess game
with the pieces in their starting positions.

Example 6-11. Creating a multidimensional numeric array

<?php

 $chessboard = array(

 array('r', 'n', 'b', 'q', 'k', 'b', 'n', 'r'),

 array('p', 'p', 'p', 'p', 'p', 'p', 'p', 'p'),

 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),

 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),

 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),

 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),

 array('P', 'P', 'P', 'P', 'P', 'P', 'P', 'P'),

 array('R', 'N', 'B', 'Q', 'K', 'B', 'N', 'R')

);

 echo "<pre>";

 foreach($chessboard as $row)

 {

 foreach ($row as $piece)

 echo "$piece ";

 echo "
";

 }

 echo "</pre>";

?>

In this example, the lowercase letters represent black pieces,
and the uppercase white. The key is r = rook, n = knight, b =
bishop, k = king, q = queen, and p = pawn. Again, a pair of
nested foreach...as loops walks through the array and
displays its contents. The outer loop processes each row into
the variable $row, which itself is an array, because the
$chessboard array uses a subarray for each row. This loop
has two statements within it, so curly braces enclose them.

The inner loop then processes each square in a row, outputting
the character ($piece) stored in it, followed by a space (to
square up the printout). This loop has a single statement, so
curly braces are not required to enclose it. The <pre> and
</pre> tags ensure that the output displays correctly, like this:

r n b q k b n r

p p p p p p p p

P P P P P P P P

R N B Q K B N R

You can also directly access any element within this array by
using square brackets:

echo $chessboard[7][3];

This statement outputs the uppercase letter Q, the eighth
element down and the fourth along (remember that array
indexes start at 0, not 1).

Using Array Functions
You’ve already seen the list and each functions, but PHP
comes with numerous other functions for handling arrays. You
can find the full list in the documentation. However, some of
these functions are so fundamental that it’s worth taking the
time to discuss them here.

is_array
Arrays and variables share the same namespace (as arrays are
types of variable). This means you cannot have a string
variable called $fred and an array also called $fred. If you’re
in doubt and your code needs to check whether a variable is an
array, you can use the is_array function, like this:

echo is_array($fred) ? "Is an array" : "Is not an array";

Note that if $fred has not yet been assigned a value, an
Undefined variable message will be generated.

count
Although the each function and foreach...as loop structure
are excellent ways to walk through an array’s contents,
sometimes you need to know exactly how many elements are
in your array, particularly if you will be referencing them

https://oreil.ly/fMBdL

directly. To count all the elements in the top level of an array,
use a command such as:

echo count($fred);

Should you wish to know how many elements altogether are in
a multidimensional array, you can use a statement such as:

echo count($fred, 1);

The second parameter is optional and sets the mode to use. It
should be either 0 to limit counting to only the top level or 1 to
force recursive counting of all subarray elements.

sort
Sorting is so common that PHP provides a built-in function for
it. In its simplest form, you would use it like this (to sort items
normally: the default):

sort($fred);

It is important to remember that, unlike some other functions,
sort will act directly on the supplied array rather than
returning a new array of sorted elements. It returns TRUE on
success and FALSE on error and also supports a few flags—the
main two flags you might wish to use force items to be sorted
either numerically or as strings, like this:

sort($fred, SORT_NUMERIC);

sort($fred, SORT_STRING);

You can also sort an array in reverse order using the rsort
function, like this:

rsort($fred, SORT_NUMERIC);

rsort($fred, SORT_STRING);

shuffle
There may be times when you need the elements of an array to
be put in random order, such as when you’re creating a game
of playing cards:

shuffle($cards);

Like sort, shuffle acts directly on the supplied array and
returns TRUE on success or FALSE on error.

explode
explode is a very useful function; you can take a string
containing several items separated by a single character (or
string of characters) and then place each of these items into an
array. One handy example is to split up a sentence into an
array containing all its words, as in Example 6-12.

Example 6-12. Exploding a string into an array using spaces

<?php

 $temp = explode(' ', "This is a sentence with seven words");

 print_r($temp);

?>

This example prints out the following (on a single line when
viewed in a browser):

Array

(

 [0] => This

 [1] => is

 [2] => a

 [3] => sentence

 [4] => with

 [5] => seven

 [6] => words

)

The first parameter, the delimiter, need not be a space or even
a single character. Example 6-13 shows a slight variation.

Example 6-13. Exploding a string delimited with *** into an
array

<?php

 $temp = explode('***', "A***sentence***with***asterisks");

 print_r($temp);

?>

The code in Example 6-13 prints this:

Array

(

 [0] => A

 [1] => sentence

 [2] => with

 [3] => asterisks

)

compact
At times you may want to use compact, the inverse of
extract, to create an array from variables and their values.
Example 6-14 shows how to use this function by passing
variable names without the preceding $ characters.

Example 6-14. Using the compact function

<?php

 $fname = "Doctor";

 $sname = "Who";

 $planet = "Gallifrey";

 $system = "Gridlock";

 $constellation = "Kasterborous";

 $contact = compact('fname', 'sname', 'planet',

 'system', 'constellation');

 print_r($contact);

?>

The result of running Example 6-14 is:

Array

(

 [fname] => Doctor

 [sname] => Who

 [planet] => Gallifrey

 [system] => Gridlock

 [constellation] => Kasterborous

)

Note how compact requires the variable names to be supplied
in quotes, not preceded by a $ symbol. This is because
compact is looking for a list of variable names, not their
values.

Another use of this function is for debugging, when you wish
to quickly view several variables and their values, as in
Example 6-15.

Example 6-15. Using compact to help with debugging

<?php

 $j = 23;

 $temp = "Hello";

 $address = "1 Old Street";

 $age = 61;

 print_r(compact(explode(' ', 'j temp address age')));

?>

This works by using the explode function to extract all the
words from the string into an array, which is then passed to the
compact function, which in turn returns an array to print_r,
which finally shows its contents.

If you copy and paste the print_r line of code, you only need
to alter the variables named there for a quick printout of a
group of variables’ values. In this example, the output is:

Array

(

 [j] => 23

 [temp] => Hello

 [address] => 1 Old Street

 [age] => 61

)

reset
When calling the next function (as seen in the myEach
function earlier in the chapter), PHP’s internal array pointer,
which makes a note of which element of the array it should
return next, advances one place forward. If your code ever
needs to return to the start of an array, you can issue reset,
which also returns the value of that element. Examples of how
to use this function are:

reset($fred); // Throw away return value

$item = reset($fred); // Keep first element of the array in

$item

It’s important to note that the foreach...as construct does
not modify the internal array pointer, so if you’re using it to
walk through an array, you don’t need to care about the
pointer, or resetting it.

end
As with reset, you can move PHP’s internal array pointer to
the final element in an array using the end function, which
also returns the value of the element and can be used as in
these examples:

end($fred);

$item = end($fred);

This chapter concludes your basic introduction to PHP, and
you should now be able to write quite complex programs using
the skills you have learned. In Chapter 7, we’ll look at using
PHP for common, practical tasks, but before you go, test your
understanding of PHP arrays by answering these questions.

Questions

1. What is the difference between a numeric and an
associative array?

2. What is the main benefit of the array keyword?

3. What are some alternative ways of walking through
an associative array as compared to foreach?

4. How can you create a multidimensional array?

5. How can you determine the number of elements in an
array?

6. What is the purpose of the explode function?

7. How can you set PHP’s internal pointer into an array
back to the first element of the array?

See “Chapter 6 Answers” in the Appendix A for the answers to
these questions.

Chapter 7. Practical PHP

The previous chapters discussed and illustrated the elements of
the PHP language. This chapter builds on your new
programming skills to teach you how to perform some
common but important practical tasks. You will learn the best
ways to handle strings in order to achieve clear and concise
code that displays in web browsers exactly how you want it to,
including advanced date and time management. You’ll also
learn how to create and modify files, including those uploaded
by users.

Using printf
You’ve already seen the print and echo functions, which
simply output text to the browser. But a much more powerful
function, printf, controls the format of the output by letting
you put special formatting characters in a string. For each
formatting character, printf expects you to pass an argument
that it will display using that format. For instance, the
following example uses the %d conversion specifier to display
the value 3 in decimal:

printf("There are %d items in your basket", 3);

If you replace the %d with %b, the value 3 will be displayed in
binary (11). Table 7-1 shows the conversion specifiers
supported.

Table 7-1. The printf conversion specifiers

Specifier
Conversion action
on argument arg

Example (for
an arg of 123)

% Display a % character
(no arg required)

%

b Display arg as a binary
integer

1111011

c Display ASCII
character for arg

{

d Display arg as a signed
decimal integer

123

e Display arg using
scientific notation

1.23000e+2

f Display arg as floating
point

123.000000

o Display arg as an octal
integer

173

s Display arg as a string 123

u Display arg as an
unsigned decimal

123

x Display arg in
lowercase hexadecimal

7b

X Display arg in
uppercase hexadecimal

7B

If you need a percent sign in the output, just use a double
percent sign (%%). The following code will print "The rate
is 5 %":

printf("The rate is %d %%", 5);

You can have as many specifiers as you like in a printf
function, as long as you pass a matching number of arguments
and as long as each specifier is prefaced by a % symbol.
Therefore, the following code is valid and will output "My
name is Simon. I'm 33 years old, which is 21 in

hexadecimal":

printf("My name is %s. I'm %d years old, which is %X in

hexadecimal",

 'Simon', 33, 33);

If you leave out any arguments, you will receive a parse error
informing you that a right bracket,), was unexpectedly
encountered or that there are too few arguments.

A more practical example of printf sets colors in HTML
using decimal values. For example, suppose you know you
want a color that has a triplet value of 65 red, 127 green, and
245 blue but don’t want to convert this to hexadecimal
yourself. Here’s a simple solution:

printf("Hello", 65, 127,

245);

Check the format of the color specification between the
apostrophes ('') carefully. First comes the pound, or hash,
sign (#) expected by the color specification. Then come three
%X format specifiers, one for each of your numbers. The
resulting output from this command is:

Hello

Usually, you’ll find it convenient to use variables or
expressions as arguments to printf. For instance, if you
stored values for your colors in the three variables $r, $g, and
$b, you could create a darker color with these simple
mathematical expressions (as long as $r, $g, and $b are
greater than 19):

printf("Hello", $r-20, $g-20,

$b-20);

Precision Setting
Not only can you specify a conversion type, but you also can
set the precision of the displayed result. For example, amounts
of currency are usually displayed with only two digits of
precision. However, after a calculation, a value may have a
greater precision than this, such as 123.42 / 12, which results
in 10.285. To ensure that such values are displayed with only
two digits of precision, you can insert the string ".2" between
the % symbol and the conversion specifier:

printf("The result is: $%.2f", 123.42 / 12);

The output from this command is:

The result is $10.29

But you actually have even more control, because you also can
specify whether to pad output with either zeros or spaces by
prefacing the specifier with certain values. Example 7-1 shows
four possible combinations.

Example 7-1. Precision setting

<?php

 echo "<pre>"; // Enables viewing of the spaces

 // Pad to 15 spaces

 printf("The result is $%15f\n", 123.42 / 12);

 // Pad to 15 spaces, fill with zeros

 printf("The result is $%015f\n", 123.42 / 12);

 // Pad to 15 spaces, 2 decimal places precision

 printf("The result is $%15.2f\n", 123.42 / 12);

 // Pad to 15 spaces, 2 decimal places precision, fill with

zeros

 printf("The result is $%015.2f\n", 123.42 / 12);

 // Pad to 15 spaces, 2 decimal places precision, fill with #

symbol

 printf("The result is $%'#15.2f\n", 123.42 / 12);

?>

The output from this example looks like this:

The result is $ 10.285000

The result is $00000010.285000

The result is $ 10.29

The result is $000000000010.29

The result is $##########10.29

The way it works is simple if you go from right to left (see
Table 7-2). Notice that:

The rightmost character is the conversion specifier: in
this case, f for floating point.

Just before the conversion specifier, if there is a
period and a number together, then the precision of
the output is specified as the value of the number.

Regardless of whether there’s a precision specifier, if
there is a number, then that represents the number of
characters to which the output should be padded. In
the previous example, this is 15 characters. It
represents the total minimum width of the output, not
the number of pad characters to add. If the output is
already equal to or greater than the padding length,
then this argument is ignored.

The leftmost parameter allowed after the % symbol is
a 0, which is ignored unless a padding value has been

set, in which case the output is padded with zeros
instead of spaces. If a pad character other than zero or
a space is required, you can use any one of your
choice as long as you preface it with a single
quotation mark, like this: '#.

On the left is the % symbol, which starts the
conversion.

String Padding
You can also pad strings to required lengths (as you can with
numbers), select different padding characters, and even choose
between left and right justification. Example 7-2 shows
various examples.

Example 7-2. String padding

<?php

 echo "<pre>"; // Enables viewing of the spaces

 $h = 'Rasmus';

 printf("[%s]\n", $h); // Standard string output

 printf("[%12s]\n", $h); // Right justify with spaces to

width 12

 printf("[%-12s]\n", $h); // Left justify with spaces

 printf("[%012s]\n", $h); // Pad with zeros

 printf("[%'#12s]\n\n", $h); // Use the custom padding

character '#'

Table 7-2. Conversion specifier components

Start
conversion

Pad
character

Number of
pad
characters

Display
precisio

% 15

% 0 15 .2

% '# 15 .4

 $d = 'Rasmus Lerdorf'; // The original creator of PHP

 printf("[%12.8s]\n", $d); // Right justify, cutoff of 8

characters

 printf("[%-12.12s]\n", $d); // Left justify, cutoff of 12

characters

 printf("[%-'@12.10s]\n", $d); // Left justify, pad '@', cutoff

of 10 chars

?>

Note how for purposes of web page layout, I’ve used the
<pre> HTML tag to preserve all the spaces and the \n newline
character after each of the lines to be displayed. The output
from this example is:

[Rasmus]

[Rasmus]

[Rasmus]

[000000Rasmus]

[######Rasmus]

[Rasmus L]

[Rasmus Lerdo]

[Rasmus Ler@@]

When you specify a padding value, strings of a length equal to
or greater than that value will be ignored and preserved
entirely, unless a cutoff value is given that shortens the strings
back to less than the padding value.

Table 7-3 shows the components available to string conversion
specifiers.

Using sprintf
Often, you don’t want to output the result of a conversion but
need it to use elsewhere in your code. This is where the
sprintf function (which stands for string print) comes in.
With it, you can send the output to another variable rather than
to the browser.

You might use it to make a conversion, as in the following
example, which returns the hexadecimal string value for the
RGB color group 65, 127, 245 in $hexstring:

$hexstring = sprintf("%X%X%X", 65, 127, 245);

Or you can store output in a variable for other use or display:

$out = sprintf("The result is: $%.2f", 123.42 / 12);

echo $out;

Date and Time Functions
To keep track of the date and time, PHP uses standard Unix
timestamps, which are simply the number of seconds since the
start of January 1, 1970 (sometimes referred to as the Unix

Table 7-3. String conversion specifier components

Start
conversion

Left/right
justify

Padding
character

Number
pad
characte

%

% - 10

% '# 8

epoch). To determine the current timestamp, you can use the
time function:

echo time();

Because the value is stored as seconds, to obtain the timestamp
for this time next week, you would use the following, which
adds the result of 7 days × 24 hours × 60 minutes × 60 seconds
to the returned value:

echo time() + 7 * 24 * 60 * 60;

If you wish to create a timestamp for a given date, you can use
the mktime function. Its output is the timestamp 1827619200
for the first second of the first minute of the first hour of the
first day of December in 2027:

echo mktime(0, 0, 0, 12, 1, 2027);

The parameters to pass are, in order from left to right:

The number of the hour (0–23)

The number of the minute (0–59)

The number of seconds (0–59)

The number of the month (1–12)

The number of the day (1–31)

The year (1970–2038, or 1901–2038 with PHP 5.1.0+
on 32-bit signed systems)

THE Y2K38 BUG
You may ask why you are limited to 1970 through 2038.
Well, it’s because the original developers of Unix chose
the start of 1970 as the earliest date that any programmer
would ever need to reference!

Luckily, as of version 5.1.0, PHP supports systems using a
signed 32-bit integer for the timestamp, allowing dates
from 1901 to 2038. However, that introduces a problem
even worse than the original one, because the Unix
designers also decided that nobody would still be using
Unix after about 70 years or so and therefore believed they
could get away with storing the timestamp as a 32-bit
value—which will run out on January 19, 2038!

This will create what has come to be known as the Y2K38
bug (much like the millennium bug, which was caused by
storing years as two-digit values and also had to be fixed).
PHP introduced the DateTime class in version 5.2 to
overcome this issue, but it will work only on 64-bit
architecture, which most computers will be these days (but
do check before you use it).

To display the date, use the date function, which supports a
plethora of formatting options enabling you to display the date
any way you wish. The format is:

date($format, $timestamp);

The parameter $format should be a string containing
formatting specifiers as detailed in Table 7-4, and $timestamp
should be a Unix timestamp. For the complete list of
specifiers, please see the documentation.

The following command will output the current date and time
in the format "Monday February 17th, 2027 - 1:38pm":

echo date("l F jS, Y - g:ia", time());

https://oreil.ly/3ysuL

Table 7-4. The major date function format specifiers

Format Description
Returned
value

Day specifiers

d Day of month, two
digits, with leading zeros

01 to 31

D Day of the week, three
letters

Mon to Sun

j Day of month, no leading
zeros

1 to 31

l Day of week, full names Sunday to Saturd
ay

N Day of week, numeric,
Monday to Sunday

1 to 7

S Suffix for day of month
(useful with specifier j)

st, nd, rd, or th

w Day of week, numeric,
Sunday to Saturday

0 to 6

z Day of year 0 to 365

Week specifier

W Week number of year 01 to 52

Month specifiers

F Month name January to Decem
ber

Format Description
Returned
value

m Month number with
leading zeros

01 to 12

M Month name, three
letters

Jan to Dec

n Month number, no
leading zeros

1 to 12

t Number of days in given
month

28 to 31

Year specifiers

L Leap year 1 = Yes, 0 =
No

y Year, 2 digits 00 to 99

Y Year, 4 digits 0000 to 9999

Time specifiers

a Before or after midday,
lowercase

am or pm

A Before or after midday,
uppercase

AM or PM

g Hour of day, 12-hour
format, no leading zeros

1 to 12

G Hour of day, 24-hour
format, no leading zeros

0 to 23

Format Description
Returned
value

h Hour of day, 12-hour
format, with leading
zeros

01 to 12

H Hour of day, 24-hour
format, with leading
zeros

00 to 23

i Minutes, with leading
zeros

00 to 59

s Seconds, with leading
zeros

00 to 59

Timezone specifiers

e Timezone identifier For example U
TC or Europe/Pra
gue

O Difference to GMT, no
colon between hours and
minutes

For example +
0200

P Difference to GMT, with
colon

For example +
02:00

T Timezone abbreviation,
if known, or the GMT
offset

For example C
EST or GMT-0500

Date Constants
You can use a number of constants with the date command to
return the date in specific formats. For example,
date(DATE_RSS) returns the current date and time in the valid

format for an RSS feed. Some of the more commonly used
constants are:

DATE_ATOM

This is the format for Atom feeds. The PHP format is "Y-

m-d\TH:i:sP", and example output is "2025-05-

15T12:00:00+00:00". DATE_RFC3339 uses the same

format.

DATE_COOKIE

This is the format for cookies set from a web server or

JavaScript. The PHP format is "l, d-M-y H:i:s T", and

example output is "Thursday, 15-May-25 12:00:00

UTC".

DATE_RSS

This is the format for RSS feeds. The PHP format is "D, d

M Y H:i:s O", and example output is "Thu, 15 May

2025 12:00:00 +0000".

DATE_W3C

This is the format defined by the World Wide Web

Consortium for use in World Wide Web–related standards.

The PHP format is "Y-m-d\TH:i:sP", and example output

is "2025-05-15T12:00:00+00:00". It is the same format

as DATE_ATOM and DATE_RFC3339.

You can find the complete list in the documentation.

Using checkdate

https://oreil.ly/FDCRH

You’ve seen how to display a valid date in a variety of
formats. But how can you check whether a user has submitted
a valid date to your program? The answer is to pass the month,
day, and year to the checkdate function, which returns a value
of TRUE if the date is valid or FALSE if it is not.

For example, if September 31 of any year is input, it will
always be an invalid date. Example 7-3 shows code that you
could use for this. As it stands, it will find the given date
invalid.

Example 7-3. Checking for the validity of a date

<?php

 $month = 9; // September (only has 30 days)

 $day = 31; // 31st

 $year = 2025;

 if (checkdate($month, $day, $year)) echo "Date is valid";

 else echo "Date is invalid";

?>

File Handling
Powerful as it is, MySQL, discussed later in the book, is not
the only (or necessarily the best) way to store all data on a web
server. Sometimes it can be quicker and more convenient to
directly access files on the hard disk. Cases in which you
might need to do this are when modifying images such as
uploaded user avatars or with a logfile that you wish to
process.

First, though, a note about file naming: if you are writing code
that might be used on various PHP installations, there is no
way of knowing whether these systems are case-sensitive. For
example, Windows and macOS filenames are not case-
sensitive (unless the file format has been specifically changed
to be case-sensitive), but Linux and Unix filenames are.
Therefore, you should always assume that the system is case-

sensitive and stick to a convention such as all-lowercase
filenames.

Checking Whether a File Exists
To determine whether a file already exists, you can use the
file_exists function, which returns either TRUE or FALSE
and is used like this:

if (file_exists("testfile.txt")) echo "File exists";

Creating a File
At this point, testfile.txt doesn’t exist, so let’s create it and
write a few lines to it. Type Example 7-4 and save it as
testfile.php.

Example 7-4. Creating a simple text file

<?php // testfile.php

 $fh = fopen("testfile.txt", 'w') or die("Failed to create

file");

 $text = <<<_END

Line 1

Line 2

Line 3

_END;

 fwrite($fh, $text) or die("Could not write to file");

 fclose($fh);

 echo "File 'testfile.txt' written successfully";

?>

Should a program call the die function , the open file will be
automatically closed as part of terminating the program.

When you run this in a browser, all being well, you will
receive the message File 'testfile.txt' written
successfully. If you receive an error message, your hard
disk may be full or, more likely, you may not have permission
to create or write to the file, in which case you should modify

the attributes of the destination folder according to your
operating system. Otherwise, the file testfile.txt should now be
residing in the same folder in which you saved the testfile.php
program. Try opening the file in a text or program editor—the
contents will look like this:

Line 1

Line 2

Line 3

This simple example shows the sequence that all file handling
takes:

1. Always start by opening the file. You do this through
a call to fopen.

2. Then you can call other functions; here we write to
the file (fwrite), but you can also read from an
existing file (fread or fgets) and do other things.

3. Finish by closing the file (fclose). Although the
program does this for you when it ends, you should
clean up by closing the file when you’re finished.

Every open file requires a file resource so that PHP can access
and manage it. The preceding example sets the variable $fh
(which I chose to stand for file handle) to the value returned
by the fopen function. Thereafter, each file-handling function
that accesses the opened file, such as fwrite or fclose, must
be passed $fh as a parameter to identify the file being
accessed. Don’t worry about the content of the $fh variable;
it’s a number PHP uses to refer to internal information about
the file—you just pass the variable to other functions.

Upon failure, FALSE will be returned by fopen. The previous
example shows a simple way to capture and respond to the
failure: it calls the die function to end the program and give
the user an error message. A web application would never

abort in this crude way (you would create a web page with an
error message instead), but this is fine for our testing purposes.

Notice the second parameter to the fopen call. It is simply the
character w, which tells the function to open the file for
writing. The function creates the file if it doesn’t already exist.
Be careful when playing around with these functions: if the
file already exists, the w mode parameter causes the fopen call
to delete the old contents (even if you don’t write anything
new!).

There are several different mode parameters that can be used
here, as detailed in Table 7-5. The modes that include a +
symbol are further explained in “Updating Files”.

Table 7-5. The supported fopen modes

Mode Action Description

'r'

Read from
file’s
beginning

Open for reading
only; place the file
pointer at the
beginning of the file.
Return FALSE if the file
doesn’t already exist.

'r+'

Read from
file’s
beginning
and allow
writing

Open for reading and
writing; place the file
pointer at the
beginning of the file.
Return FALSE if the file
doesn’t already exist.

'w'

Write from
file’s
beginning
and truncate
file

Open for writing
only; place the file
pointer at the
beginning of the file
and truncate the file
to zero length. If the
file doesn’t exist,
attempt to create it.

'w+'

Write from
file’s
beginning,
truncate file,
and allow
reading

Open for reading and
writing; place the file
pointer at the
beginning of the file
and truncate the file
to zero length. If the
file doesn’t exist,
attempt to create it.

'a'

Append to
file’s end

Open for writing
only; place the file
pointer at the end of
the file. If the file
doesn’t exist,
attempt to create it.

'a+'

Append to
file’s end
and allow
reading

Open for reading and
writing; place the file
pointer at the end of
the file. If the file
doesn’t exist,
attempt to create it.

Reading from Files
The easiest way to read from a text file is to grab a whole line
through fgets (think of the final s as standing for string), as
in Example 7-5.

Example 7-5. Reading a file with fgets

<?php

 $fh = fopen("testfile.txt", 'r') or

 die("File does not exist or you lack permission to open

it");

 $line = fgets($fh);

 fclose($fh);

 echo $line;

?>

If you created the file as shown in Example 7-4, you’ll get the
first line:

Line 1

You can retrieve multiple lines or portions of lines through the
fread function, as in Example 7-6.

Example 7-6. Reading a file with fread

<?php

 $fh = fopen("testfile.txt", 'r') or

 die("File does not exist or you lack permission to open

it");

 $text = fread($fh, 3);

 fclose($fh);

 echo $text;

?>

I’ve requested three bytes in the fread call, so the program
displays this:

Lin

The fread function is commonly used with binary data. If you
use it on text data that spans more than one line, remember to
count newline characters.

Copying Files
Let’s try out the PHP copy function to create a clone of
testfile.txt. Type Example 7-7, save it as copyfile.php, and then
call up the program in your browser.

Example 7-7. Copying a file

<?php // copyfile.php

 copy('testfile.txt', 'testfile2.txt') or die("Could not copy

file");

 echo "File successfully copied to 'testfile2.txt'";

?>

If you check your folder again, you’ll see it contains the new
file testfile2.txt. By the way, if you don’t want your programs
to exit on a failed copy attempt, you could try the alternate
syntax in Example 7-8. This uses the ! (NOT) operator as a
quick-and-easy shorthand. Placed in front of an expression, it
applies the NOT operator, so the equivalent statement here in
English would begin “If not able to copy…”.

Example 7-8. Alternate syntax for copying a file

<?php // copyfile2.php

 if (!copy('testfile.txt', 'testfile2.txt')) echo "Could not

copy file";

 else echo "File successfully copied to 'testfile2.txt'";

?>

Moving a File
To move a file, rename it with the rename function, as in
Example 7-9.

Example 7-9. Moving a file

<?php // movefile.php

 if (!rename('testfile2.txt', 'testfile2.new'))

 echo "Could not rename file";

 else echo "File successfully renamed to 'testfile2.new'";

?>

You can use the rename function on directories, too. To avoid
any warning messages if the original file doesn’t exist, you can
call the file_exists function first to check.

Deleting a File
Deleting a file is just a matter of using the unlink function to
remove it from the filesystem, as in Example 7-10.

Example 7-10. Deleting a file

<?php // deletefile.php

 if (!unlink('testfile2.new')) echo "Could not delete file";

 else echo "File 'testfile2.new' successfully deleted";

?>

WARNING
Whenever you directly access files on your hard disk, you must always
ensure that it is impossible for your filesystem to be compromised. For
example, if you are deleting a file based on user input, you must make
absolutely certain it is a file that can be safely deleted and that the user
is allowed to delete it.

As with moving a file, a warning message will be displayed if
the file doesn’t exist, which you can avoid by using
file_exists to first check for its existence before calling
unlink.

Updating Files
Often, you will want to add more data to a saved file, which
you can do in many ways. You can use one of the append write
modes (see Table 7-5), or you can simply open a file for
reading and writing with one of the other modes that supports
writing, and move the file pointer to the correct place within
the file that you wish to write to or read from.

The file pointer is the position within a file at which the next
file access will take place, whether it’s a read or a write. It is
not the same as the file handle (as stored in the variable $fh in
Example 7-4), which contains details about the file being
accessed.

You can see this in action by typing Example 7-11 and saving
it as update.php. Then call it up in your browser.

Example 7-11. Updating a file

<?php // update.php

 $fh = fopen("testfile.txt", 'r+') or die("Failed to open

file");

 $text = fgets($fh);

 fseek($fh, 0, SEEK_END);

 fwrite($fh, "\n$text") or die("Could not write to file");

 fclose($fh);

 echo "File 'testfile.txt' successfully updated";

?>

This program opens testfile.txt, as created in Example 7-4, for
both reading and writing by setting the mode with 'r+', which
puts the file pointer right at the start. It then uses the fgets
function to read in a single line from the file (up to the first

line feed). After that, the fseek function is called to move the
file pointer right to the file end, at which point the line of text
that was extracted from the start of the file (stored in $text) is
then appended to the file’s end (preceded by a \n line feed)
and the file is closed. The resulting file now looks like this:

Line 1

Line 2

Line 3

Line 1

The first line has successfully been copied and then appended
to the file’s end.

As used here, in addition to the $fh file handle, the fseek
function was passed two other parameters, 0 and SEEK_END.
SEEK_END tells the function to move the file pointer to the end
of the file, and 0 tells it how many positions it should then be
moved backward from that point. In the case of Example 7-11,
a value of 0 is used because the pointer is required to remain at
the file’s end.

Two other seek options available to the fseek function are:
SEEK_SET and SEEK_CUR. The SEEK_SET option tells the
function to set the file pointer to the exact position given by
the preceding parameter. Thus, the following example moves
the file pointer to position 18:

fseek($fh, 18, SEEK_SET);

SEEK_CUR sets the file pointer to the current position plus the
value of the given offset. Therefore, if the file pointer is
currently at position 18, the following call will move it to
position 23:

fseek($fh, 5, SEEK_CUR);

Locking Files for Multiple Accesses

Web programs are often called by many users at the same
time. If more than one person tries to write to a file
simultaneously, it can become corrupted. And if one person
writes to it while another is reading from it, the file is all right,
but the person reading it can get odd results. To handle
simultaneous users, you must use the file-locking flock
function. This function queues up all other requests to access a
file until your program releases the lock. So, whenever your
programs use write access on files that may be accessed
concurrently by multiple users, you should also add file
locking to them, as in Example 7-12, which is an updated
version of Example 7-11.

Example 7-12. Updating a file with file locking

<?php

 $fh = fopen("testfile.txt", 'r+') or die("Failed to open

file");

 $text = fgets($fh);

 if (flock($fh, LOCK_EX))

 {

 fseek($fh, 0, SEEK_END);

 fwrite($fh, "$text") or die("Could not write to file");

 flock($fh, LOCK_UN);

 }

 fclose($fh);

 echo "File 'testfile.txt' successfully updated";

?>

There is a trick to file locking to preserve the best possible
response time for your website visitors: perform it directly
before a change you make to a file, and then unlock it
immediately afterward. Having a file locked for any longer
than this will slow your application unnecessarily. This is why
the calls to flock in Example 7-12 are directly before and
after the fwrite call.

The first call to flock sets an exclusive file lock on the file
referred to by $fh using the LOCK_EX parameter:

flock($fh, LOCK_EX);

From this point, no other processes can write to (or even read
from) the file until you release the lock by using the LOCK_UN
parameter, like this:

flock($fh, LOCK_UN);

As soon as the lock is released, other processes are again
allowed access to the file. This is one reason you should
reseek to the point you wish to access in a file each time you
need to read or write data—another process could have
changed the file since the last access.

However, did you notice that the call to request an exclusive
lock is nested as part of an if statement? This is because
flock is not supported on all systems; thus, it is wise to check
whether you successfully secured a lock, just in case one could
not be obtained.

Something else you must consider is that flock is what is
known as an advisory lock. This means that it locks out only
other processes that call the function. If you have any code
that goes right in and modifies files without implementing
flock file locking, it will always override the locking and
could wreak havoc on your files.

By the way, implementing file locking and then accidentally
leaving it out in one section of code can lead to an extremely
hard-to-locate bug.

WARNING
flock will not work on NFS and many other networked filesystems.
Also, when using a multithreaded server like ISAPI, you may not be
able to rely on flock to protect files against other PHP scripts running
in parallel threads of the same server instance. Additionally, flock is
not supported on any system using the old FAT filesystem, such as
older versions of Windows, although you are unlikely to come across
such systems (hopefully).

If in doubt, try making a quick lock on a test file at the start of a
program to see whether you can obtain a lock on the file. Don’t forget
to unlock it (and maybe delete it if not needed) after checking.

Also remember that any call to the die function automatically unlocks
a lock and closes the file as part of ending the program.

Reading an Entire File
A handy function for reading in an entire file without having
to use file handles is file_get_contents, as shown in
Example 7-13.

Example 7-13. Using file_get_contents

<?php

 echo "<pre>"; // Enables display of line feeds

 echo file_get_contents("testfile.txt");

 echo "</pre>"; // Terminates <pre> tag

?>

But the function is actually a lot more useful, because you also
can use it to fetch a file from a server across the internet, as in
Example 7-14, which requests the HTML from the O’Reilly
home page and then displays it as if the user had surfed to the
page itself. The result will be similar to Figure 7-1 (at the time
of writing).

Example 7-14. Grabbing the O’Reilly home page

<?php

 echo file_get_contents("http://oreilly.com");

?>

Figure 7-1. O’Reilly home page grabbed with file_get_contents

Uploading Files
Uploading files to a web server is a subject that seems
daunting to many people, but it actually is very
straightforward. All you need to do to upload a file from a
form is choose a special type of encoding called
multipart/form-data, and your browser will handle the rest.
To see how this works, type the program in Example 7-15 and
save it as upload.php. When you run it, you’ll see a form in
your browser that lets you upload a file of your choice.

Example 7-15. Image uploader upload.php

<?php // upload.php

 echo <<<_END

 <html><head><title>PHP Form Upload</title></head><body>

 <form method='post' action='upload.php'

enctype='multipart/form-data'>

 Select File: <input type='file' name='filename' size='10'>

 <input type='submit' value='Upload'>

 </form>

_END;

 if ($_FILES)

 {

 $name = $_FILES['filename']['name'];

 move_uploaded_file($_FILES['filename']['tmp_name'], $name);

 echo "Uploaded image '$name'
";

 }

 echo "</body></html>";

?>

Let’s examine this program a section at a time. The first line of
the multiline echo statement starts an HTML document,
displays the title, and then starts the document’s body.

Next we come to the form, which selects the POST method of
form submission, sets the target for posted data to the program
upload.php (the program itself), and tells the web browser that
the data posted should be encoded via the content type of
multipart/form-data, the mime type used for file uploads.

With the form set up, the next lines display the prompt Select
File: and then request two inputs. The first request is for a
file; it uses an input type of file, a name of filename, and an
input field with a width of 10 characters. The second requested
input is a submit button given the label Upload (which
replaces the default button text of submit query). And then the
form is closed.

This short program shows a common technique in web
programming in which a single program is called twice: once
when the user first visits a page (which is an HTTP GET
method request) and again when the user clicks the submit
button (an HTTP POST method request that offers some extras
over a GET request, for example, the file uploads).

The PHP code to receive the uploaded data is fairly simple,
because information about all uploaded files is placed into the
associative system array $_FILES. Therefore, a quick check to
see whether $_FILES contains anything is sufficient to
determine whether the user has uploaded a file. This is done
with the statement if ($_FILES).

The first time the user visits the page (using a GET method
request), before uploading a file, $_FILES is empty, so the
program skips this block of code. When the user uploads a file
(a POST method request), the program runs again and
discovers an element in the $_FILES array.

Once the program realizes that a file was uploaded, the actual
name, as read from the uploading computer, is retrieved and
placed into the variable $name. Now all that’s needed is to
move the uploaded file from the temporary location in which
PHP stored it to a more permanent one. We do this using the
built-in move_uploaded_file function, passing it the original
name of the file, with which it is saved to the current directory.

WARNING
If you run this program and receive a warning message such as
Permission denied for the move_uploaded_file function call, then
you may not have the correct permissions set for the folder the
program is running in.

Finally, the uploaded image is displayed within an IMG tag,
and the result should look like Figure 7-2.

Figure 7-2. Uploading an image as form data

Using $_FILES

Five things are stored in the $_FILES array when a file is
uploaded, as shown in Table 7-6 (where file is the file upload
field name supplied by the submitting form).

Table 7-6. The contents of the $_FILES array

Array element Contents

$_FILES['file']['nam

e']
The name of the uploaded file (e.g.,
smiley.jpg)

$_FILES['file']['typ

e']
The content type of the file (e.g.,
image/jpeg)

$_FILES['file']['siz

e']
The file’s size in bytes

$_FILES['file']['tmp

_name']
The name of the temporary file stored
on the server

$_FILES['file']['err

or']
The error code resulting from the file
upload

Content types used to be known as MIME (Multipurpose
Internet Mail Extension) types, but because their use later
expanded to the whole internet, now they are often called
internet media types. Table 7-7 shows some of the more
frequently used types that turn up in $_FILES['file']
['type'].

Validation
It’s important to stress here that form data validation is of the
utmost importance, due to the possibility of users attempting
to hack into your server.

In addition to maliciously formed input data, you also have to
check whether a file was actually received and, if so, whether
the right type of data was sent.

Taking all these things into account, Example 7-16,
upload2.php, is a more secure rewrite of upload.php.

Example 7-16. A more secure version of upload.php

<?php // upload2.php

 echo <<<_END

 <html><head><title>PHP Form Upload</title></head><body>

 <form method='post' action='upload2.php'

enctype='multipart/form-data'>

 Select a JPG, GIF or PNG File:

 <input type='file' name='filename' size='10'>

 <input type='submit' value='Upload'></form>

_END;

 if ($_FILES)

 {

 $name = $_FILES['filename']['name'];

 switch($_FILES['filename']['type'])

 {

 case 'image/jpeg': $ext = 'jpg'; break;

 case 'image/gif': $ext = 'gif'; break;

 case 'image/png': $ext = 'png'; break;

Table 7-7. Some common internet media content types

application/pdf image/gif multipart/form-d

ata

text/xml

application/zip image/jpeg text/css video/mpeg

audio/mpeg image/png text/html video/mp4

audio/x-wav application/json text/plain audio/webm

 default: $ext = ''; break;

 }

 if ($ext)

 {

 $n = "image.$ext";

 move_uploaded_file($_FILES['filename']['tmp_name'], $n);

 echo "Uploaded image '$name' as '$n':
";

 echo "";

 }

 else echo "'$name' is not an accepted image file";

 }

 else echo "No image has been uploaded";

 echo "</body></html>";

?>

The non-HTML section of code has been expanded from the
half-dozen lines of Example 7-15 to more than 20 lines,
starting at if ($_FILES).

As with the previous version, this if line checks whether any
data was actually posted, but there is now a matching else
near the bottom of the program that echoes a message to the
screen when nothing has been uploaded.

Within the if statement, the variable $name is assigned the
value of the filename as retrieved from the uploading
computer (just as before), but this time we won’t rely on the
user having sent us valid data. Instead, a switch statement
checks the uploaded content type against the four types of
image this program supports. If a match is made, the variable
$ext is set to the three-letter file extension for that type.
Should no match be found, the file uploaded was not of an
accepted type, and the variable $ext is set to the empty string
"".

NOTE
In this example the file type still comes from the browser and can be
modified or changed by the user uploading the file. In this instance
such user manipulation is not of concern as the files are only being
treated as images. But if the file ever could be executable, you should
not rely on information you have not ascertained to be absolutely
correct.

The next section of code then checks the variable $ext to see
whether it contains a string and, if so, creates a new filename
called $n with the base name image and the extension stored in
$ext. This means the program has full control over the file
type of the file to be created, as it can be only one of
image.jpg, image.gif, image.png, or image.tif.

Safe in the knowledge that the program has not been
compromised, the rest of the PHP code is much the same as in
the previous version. It moves the uploaded temporary image
to its new location and then displays it while also displaying
the old and new image names.

NOTE
Don’t worry about having to delete the temporary file that PHP creates
during the upload process, because if the file has not been moved or
renamed, it will be automatically removed when the program exits.

After the if statement, there is a matching else, which is
executed only if an unsupported image type was uploaded (in
which case it displays an appropriate error message).

When you write your own file-uploading routines, I strongly
advise you to use a similar approach and have prechosen
names and locations for uploaded files. That way, no attempts
to add pathnames and other malicious data to the variables you
use can get through. If this means more than one user could
end up having a file uploaded with the same name, you could
prefix such files with their user’s usernames, or save them to
individually created folders for each user.

But if you must use a supplied filename, you should sanitize it
by allowing only alphanumeric characters and the period,
which you can do with the following command, using a
regular expression (see Chapter 17) to perform a search and
replace on $name:

$name = preg_replace("/[^A-Za-z0-9.]/", "", $name);

This leaves only the characters A–Z, a–z, 0–9 and periods in
the string $name, and strips out everything else.

Even better, to ensure that your program will work on all
systems, regardless of whether they are case-sensitive or case-
insensitive, you should use the following command instead,
which changes all uppercase characters to lowercase at the
same time:

$name = strtolower(preg_replace("[^A-Za-z0-9.]", "", $name));

NOTE
Sometimes you may encounter the media type of image/pjpeg, which
indicates a progressive JPEG, but you can safely add this to your code
as an alias of image/jpeg, like this:

case 'image/pjpeg':

case 'image/jpeg': $ext = 'jpg'; break;

System Calls
Sometimes PHP will not have the function you need to
perform a certain action, but the operating system it is running
on may. In such cases, you can use the exec system call to do
the job.

For example, to quickly view the contents of the current
directory, you can use a program such as Example 7-17. If you
are on a Windows system, it will run as is using the Windows
dir command. On Linux, Unix, or macOS, comment out or
remove the first line and uncomment the second to use the ls
system command. You may wish to type this program, save it
as exec.php, and call it up in your browser.

Example 7-17. Executing a system command

<?php // exec.php

 $cmd = "dir"; // Windows, Linux

 // $cmd = "ls"; // Linux, Unix & Mac

 exec(escapeshellcmd($cmd), $output, $status);

 if ($status) echo "Exec command failed";

 else

 {

 echo "<pre>";

 foreach($output as $line) echo htmlspecialchars("$line\n");

 echo "</pre>";

 }

?>

The htmlspecialchars function is called to turn any special
characters returned by the system into ones that HTML can
understand and properly display, not only neatening the output
(as for example the < symbol is replaced with the entity <)
but also providing a very important security measure
preventing HTML injection attacks. Although such attacks are
less of a concern when listing a directory contents, you should
make it a habit to always secure your output.

Depending on the system you are using, the result of running
this program will look something like this (from a Windows
dir command):

Volume in drive C is Hard Disk

 Volume Serial Number is DC63-0E29

 Directory of C:\Program Files (x86)\Ampps\www

11/04/2025 11:58 <DIR> .

11/04/2025 11:58 <DIR> ..

28/01/2025 16:45 <DIR> 7th_edition_examples

08/01/2025 10:34 <DIR> cgi-bin

08/01/2025 10:34 <DIR> error

29/01/2025 16:18 1,150 favicon.ico

 1 File(s) 1,150 bytes

 5 Dir(s) 1,611,387,486,208 bytes free

exec takes three arguments:

The command itself (in the previous case, $cmd)

An array in which the system will put the output from
the command (in the previous case, $output)

A variable to contain the returned status of the call
(which, in the previous case, is $status)

If you wish, you can omit the $output and $status
parameters, but you will not know the output created by the
call or even whether it completed successfully.

You should also note the use of the escapeshellcmd function.
It is a good habit to always use this when issuing an exec call,
because it sanitizes the command string, preventing the
execution of arbitrary commands should you supply user input
to the call.

WARNING
The system call functions are typically disabled on shared web hosts,
as they pose a security risk. You should always try to solve your
problems within PHP if you can and go to the system directly only if it
is necessary. Also, going to the system is relatively slow, and you need
to code two implementations if your application is expected to run on
both Windows and Linux/Unix systems.

Now that you have mastered programming in PHP, the
following chapter will introduce the MySQL database, with
which you can process all the data a website could ever need
to handle. First, though, test your knowledge on the practical
PHP tips in this chapter with the following questions.

Questions
1. Which printf conversion specifier would you use to

display a floating-point number?

2. What printf statement could be used to take the
input string "Happy Birthday" and output the string
"**Happy"?

3. To send the output from printf to a variable instead
of to a browser, what alternative function would you
use?

4. How would you create a Unix timestamp for 7:11
a.m. on May 2, 2025?

5. Which file access mode would you use with fopen to
open a file in write and read mode, with the file
truncated and the file pointer at the start?

6. What is the PHP command for deleting the file
file.txt?

7. Which PHP function is used to read in an entire file in
one go, even from across the web?

8. Which PHP superglobal variable holds the details on
uploaded files?

9. Which PHP function enables the running of system
commands?

10. Which function is used to turn any special characters
returned by the system into ones that HTML can
understand and properly display?

See “Chapter 7 Answers” in the Appendix A for the answers to
these questions.

Chapter 8. Introduction to
MySQL

With well over 10 million installations, MySQL is probably
the most popular database management system for web
servers. Developed in the mid-1990s, it’s now a mature
technology that powers many of today’s most-visited internet
destinations.

One reason for its success is that, like PHP, it’s free to use. But
it’s also extremely powerful and exceptionally fast. MySQL is
also highly scalable, which means that it can grow with your
website; the latest benchmarks are kept up-to-date online.

MySQL Basics
A database is a structured collection of records or data stored
in a computer system and organized in such a way that it can
be quickly searched and information rapidly retrieved.

The SQL in MySQL stands for Structured Query Language.
This language is loosely based on English and also used in
other databases such as Oracle and Microsoft SQL Server. It is
designed to allow simple requests from a database via
commands such as:

SELECT title FROM publications WHERE author = 'Charles Dickens';

A MySQL database contains one or more tables, each of
which contains records or rows. Within these rows are various
columns or fields that contain the data itself. Table 8-1 shows
the contents of an example database of five publications,
detailing the author, title, type, and year of publication.

https://oreil.ly/0H0G9

Each row in the table is the same as a row in a MySQL table, a
column in the table corresponds to a column in MySQL, and
each element within a row is the same as a MySQL field.

To uniquely identify this database, I’ll refer to it as the
publications database in the examples that follow. And, as you
will have observed, all these publications are considered to be
classics of literature, so I’ll call the table within the database
that holds the details classics.

Key Database Terms
The main terms you need to acquaint yourself with for now
are:

Database

Table 8-1. Example of a simple database

Author Title Type Year

Mark Twain The
Adventures of
Tom Sawyer

Fiction 1876

Jane Austen Pride and
Prejudice

Fiction 1811

Charles
Darwin

On the Origin
of Species

Nonfiction 1856

Charles
Dickens

The Old
Curiosity
Shop

Fiction 1841

William
Shakespeare

Romeo and
Juliet

Play 1594

The overall container for a collection of data

Table

A subcontainer within a database that stores the actual data

Row

A single record within a table, which may contain several

fields

Column

The name of a field within a row

Note that I’m not trying to reproduce the precise terminology
used about relational databases but just to provide simple,
everyday terms to help you quickly grasp basic concepts and
get started with a database.

Accessing MySQL via the Command
Line
There are three main ways you can interact with MySQL:
using a command line, via a web interface such as
phpMyAdmin, and through a programming language like PHP.
We’ll start doing the third option in Chapter 10, but for now,
let’s look at the first two.

GRAPHICAL USER INTERFACES
You can also use a visual or graphical tool like the MySQL
Workbench, or DBeaver and a MySQL addon is also available for
favorite IDEs including Visual Studio Code and PhpStorm.

Starting the Command-Line Interface
The following sections describe relevant instructions for
Windows, macOS, and Linux.

Windows users
If you installed AMPPS (as explained in Chapter 2) in the
usual way, you will be able to access the MySQL executable
from the following directory:

C:\Program Files\Ampps\mysql\bin

NOTE
If you installed AMPPS in any other place, you will need to use that
directory instead, such as the following for 32-bit installations of
AMPPS:

C:\Program Files (x86)\Ampps\mysql\bin

By default, the initial AMPPS MySQL user is root, and it will
have a default password of mysql. So, to enter MySQL’s
command-line interface, select Start→Run, enter CMD into the
Run box, and press Return. This will call up a Windows
command prompt. From there, enter the following (making
any appropriate changes as just discussed):

cd C:\"Program Files\Ampps\mysql\bin"

mysql -u root -pmysql

The first command changes to the MySQL directory, and the
second tells MySQL to log you in as user root, with the
password mysql. You will now be logged in to MySQL and
can start entering commands.

If you are using Windows PowerShell (rather than a command
prompt), it will not load commands from the current location
as you must explicitly specify where to load a program from,
in which case you would, instead, enter the following (note the
preceding ./ before the mysql command):

cd C:\"Program Files\Ampps\mysql\bin"

./mysql -u root -pmysql

To be sure everything is working as it should be, enter the
following; the results should be similar to Figure 8-1:

SHOW databases;

Figure 8-1. Accessing MySQL from a Windows command prompt

You are now ready to move to the next section, “Using the
Command-Line Interface”.

macOS users
To proceed with this chapter, you should have installed
AMPPS as detailed in Chapter 2. You also should have the
web server running and the MySQL server started.

To enter the MySQL command-line interface, start the
Terminal program (which should be available in
Finder→Utilities). Then call up the MySQL program, which
will have been installed in the directory
/Applications/ampps/mysql/bin.

By default, the initial AMPPS MySQL user is root, and it will
have a password of mysql. So, to start the program, type:

/Applications/ampps/mysql/bin/mysql -u root -pmysql

This command tells MySQL to log you in as user root using
the password mysql. To verify that all is well, type the
following (Figure 8-2 should be the result):

SHOW databases;

Figure 8-2. Accessing MySQL from the macOS Terminal program

If you receive an error such as Can't connect to local
MySQL server through socket, you may need to first start
the MySQL server as described in Chapter 2.

You should now be ready to move to the next section, “Using
the Command-Line Interface”.

Linux users
On a system running a Unix-like operating system such as
Linux, you may already have PHP and MySQL installed and
running, and be able to enter the examples in this and the
following chapters. First, you should type the following to log
in to your MySQL system:

mysql -u root -p

This tells MySQL to log you in as the user root and to request
your password. If you have a password, enter it; otherwise,

just press Return.

Once you are logged in, type the following to test the program
—you should see something like Figure 8-3 in response:

SHOW databases;

Figure 8-3. Accessing MySQL using Linux

If this procedure fails at any point, please refer to Chapter 2 to
ensure that you have MySQL properly installed. Otherwise,
you should now be ready to move to the next section, “Using
the Command-Line Interface”.

MySQL on a remote server
If you are accessing MySQL on a remote server, it will
probably be a Linux/FreeBSD/Unix type of box, and you will
connect to it via the secure SSH protocol. Once in there, you
might find that things are a little different, depending on how
the system administrator has set up the server, especially if it’s
a shared hosting server. Therefore, you need to ensure that you
have been given access to MySQL and that you have your
username and password. Then you can type the following,
where username is the name supplied:

mysql -u username -p

Enter your password when prompted. Then enter the following
command, which should result in something like Figure 8-3:

SHOW databases;

Other databases already may be created, and the test database
may not be there.

Bear in mind also that system administrators have ultimate
control over everything and that you can encounter some
unexpected setups. For example, you may find that you are
required to preface all database names that you create with a
unique identifying string to ensure that your names do not
conflict with those of databases created by other users.

Therefore, if you have any problems, talk with your system
administrator, who will get you sorted out. Just let the
sysadmin know that you need a username and password. You
should also ask for the ability to create new databases or, at a
minimum, to have at least one database created for you ready
to use. You can then create all the tables you require within
that database.

Using the Command-Line Interface
From here on, it makes no difference whether you are using
Windows, macOS, or Linux to access MySQL directly, as all
the commands used (and errors you may receive) are identical.

The semicolon

Let’s start with the basics. Did you notice the semicolon (;) at
the end of the SHOW databases; command that you typed?
The semicolon is used by MySQL to separate or end
commands. If you forget to enter it, MySQL will issue a
prompt and wait for you to do so. The required semicolon was
made part of the syntax to let you enter multiline commands,
which can be convenient because some commands get quite
long. It also allows you to issue more than one command at a

time by placing a semicolon after each one. The interpreter
gets them all in a batch when you press the Enter (or Return)
key and executes them in order.

NOTE
It’s very common to receive a MySQL prompt instead of the results of
your command; it means that you forgot the final semicolon. Just enter
the semicolon and press the Enter key, and you’ll get what you want.

There are six different prompts that MySQL may present you
with (see Table 8-2), so you will always know where you are
during a multiline input.

Table 8-2. MySQL’s six command prompts

MySQL
prompt Meaning

mysql> Ready and waiting for a command

-> Waiting for the next line of a command

'> Waiting for the next line of a string started
with a single quote

"> Waiting for the next line of a string started
with a double quote

`> Waiting for the next line of a string started
with a backtick

/*> Waiting for the next line of a comment
started with /*

Canceling a command
If you are partway through entering a command and decide
you don’t wish to execute it, you can enter \c and press
Return. This is handy if you are within a set of multiline

statements or simply to save you backspacing a lot.
Example 8-1 shows how to use the command.

Example 8-1. Canceling a line of input

meaningless gibberish \c

When you type that line, MySQL will ignore everything you
typed and issue a new prompt. Without the \c, it would have
displayed an error message. Be careful, though: if you have
opened a string or comment, close it first before using the \c
or MySQL will think the \c is just part of the string.
Example 8-2 shows the right way to do this.

Example 8-2. Canceling input from inside a string

this is "meaningless gibberish" \c

Also note that using \c after a semicolon will not cancel the
preceding command, as it is then a new statement.

MySQL Commands
You’ve already seen the SHOW command, which lists tables,
databases, and many other items. The commands you’ll use
most often are listed in Table 8-3.

Table 8-3. Common MySQL commands

Command Action

ALTER Alter a database or table

BACKUP Back up a table

\c Cancel input

CREATE Create a database, table, or index

DELETE Delete a row from a table

DESCRIBE Describe a table’s columns

DROP Delete a database or table

EXIT (Ctrl-C) Exit (on some systems)

GRANT Change user privileges

HELP (\h, \?) Display help

INSERT Insert data

LOCK Lock table(s)

QUIT (\q) Same as EXIT

RENAME Rename a table

SHOW List details about database(s), table(s),
column(s), or server status

SOURCE Execute a file

STATUS (\s) Display the current status

TRUNCATE Empty a table

Command Action

UNLOCK Unlock table(s)

UPDATE Update an existing record

USE Use a database

I’ll cover most of these as we proceed, but first, you need to
remember a couple of points about MySQL commands:

SQL commands and keywords are case-insensitive.
CREATE, create, and CrEaTe all mean the same thing.
However, for the sake of clarity, you may prefer to
use uppercase.

Table names are case-sensitive on Linux and macOS
but case-insensitive on Windows. For the sake of
portability, you should always choose a case and stick
to it. The recommended style is to use lowercase for
table names.

Creating a database
If you are working on a remote server and have only a single
user account and access to a single database that was created
for you, move on to “Creating a table”. Otherwise, get the ball
rolling by issuing the following command to create a new
database called publications:

CREATE DATABASE publications;

A successful command will return a message that doesn’t
mean much yet—Query OK, 1 row affected (0.00 sec)

—but will make sense soon. Now that you’ve created the
database, you want to work with it, so issue the following
command:

USE publications;

You should now see the message Database changed, and you
will be set to proceed with the following examples.

Creating users
Now that you’ve seen how to use MySQL and create your first
database, it’s time to look at how you create users, as you
probably won’t want to grant your PHP scripts root access to
MySQL—it could cause a real headache should you get
hacked.

To create a user, issue the CREATE USER command, which
takes the following form (don’t type this in; it’s not an actual
working command):

CREATE USER 'username'@'hostname' IDENTIFIED BY 'password';

GRANT PRIVILEGES ON database.object TO 'username'@'hostname';

This should all look pretty straightforward, with the possible
exception of the database.object part, which refers to the
database itself and the objects it contains, such as tables (see
Table 8-4).

Table 8-4. Example parameters for the GRANT command

Arguments Meaning

. All databases and all their objects

database.* Only the database called database and all its
objects

database.object Only the database called database and its
object called object

So, let’s create a user who can access just the new publications
database and all its objects, by entering the following

commands (replacing the username jim and also the password
password with ones of your choosing):

CREATE USER 'jim'@'localhost' IDENTIFIED BY 'password';

GRANT ALL ON publications.* TO 'jim'@'localhost';

This allows the user jim@localhost full access to the
publications database using the password password. You can
test whether this step has worked by entering quit to exit and
then rerunning MySQL the way you did before, but instead of
logging in as root, log in with whatever username you created.
See Table 8-5 for the correct command for your operating
system. Modify it as necessary if the mysql client program is
installed in a different directory on your system.

Table 8-5. Starting MySQL and logging in as jim@localhost

OS Example command

Windows C:\"Program Files\Ampps\mysql\bin\mysql" -u ji

m -p

macOS /Applications/ampps/mysql/bin/mysql -u jim -p

Linux mysql -u jim –p

All you have to do now is enter your password when
prompted, and you will be logged in.

If you choose to, you can place your password immediately
following the -p (without any spaces) to avoid having to enter
it when prompted, but this is considered poor practice because
if other people are logged in to your system, there may be
ways for them to look at the command you entered and find
out your password.

NOTE
You can grant only privileges that you already have, and you must also
have the privilege to issue GRANT commands. There are a whole range
of privileges you can choose to grant if you are not granting all
privileges. For further details on the GRANT command and the REVOKE
command, which can remove privileges once granted, see the
documentation. Also, be aware that if you create a new user but do not
specify an IDENTIFIED BY clause, the user will have no password, a
situation that is very insecure and should be avoided.

Creating a table

At this point, you should be logged in to MySQL with ALL
privileges granted for the database publications (or a database
that was created for you), so you’re ready to create your first
table. Make sure the correct database is in use by typing the
following (replacing publications with the name of your
database if it is different):

USE publications;

Now enter the command in Example 8-3 one line at a time.

Example 8-3. Creating a table called classics

CREATE TABLE classics (

 author VARCHAR(128),

 title VARCHAR(128),

 type VARCHAR(16),

 year CHAR(4)) ENGINE InnoDB;

NOTE
The final two words in this command require a little explanation.
MySQL can process queries in many different ways internally, and
these different ways are supported by different engines. From version
5.6 onward InnoDB is the default storage engine for MySQL, and we
use it here because it supports FULLTEXT searches. As long as you have
a relatively up-to-date version of MySQL, you can omit the ENGINE
InnoDB section of the command when creating a table, but I have kept
it in for now to emphasize that this is the engine being used.

InnoDB is generally more efficient and the recommended option. If
you installed the AMPPS stack as detailed in Chapter 2, you should
have at least version 5.6.35 of MySQL.

https://oreil.ly/PwG-n

NOTE
You could also issue the previous command on a single line, like this:

CREATE TABLE classics (author VARCHAR(128), title

VARCHAR(128), type VARCHAR(16), year CHAR(4)) ENGINE

InnoDB;

But MySQL commands can be long and complicated, so I recommend
using the format shown in Example 8-3 until you are comfortable with
longer ones.

MySQL should then issue the response Query OK, 0 rows
affected, along with how long it took to execute the
command. If you see an error message instead, check your
syntax carefully. Every parenthesis and comma counts, and
typing errors are easy to make.

To check whether your new table has been created, type:

DESCRIBE classics;

All being well, you will see the sequence of commands and
responses shown in Example 8-4, where you should
particularly note the table format displayed.

Example 8-4. A MySQL session: creating and checking a new
table

mysql> USE publications;

Database changed

mysql> CREATE TABLE classics (

 -> author VARCHAR(128),

 -> title VARCHAR(128),

 -> type VARCHAR(16),

 -> year CHAR(4)) ENGINE InnoDB;

Query OK, 0 rows affected (0.03 sec)

mysql> DESCRIBE classics;

+--------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+--------------+------+-----+---------+-------+

| author | varchar(128) | YES | | NULL | |

| title | varchar(128) | YES | | NULL | |

| type | varchar(16) | YES | | NULL | |

| year | char(4) | YES | | NULL | |

+--------+--------------+------+-----+---------+-------+

4 rows in set (0.00 sec)

The DESCRIBE command is an invaluable debugging aid when
you need to ensure that you have correctly created a MySQL
table. You can also use it to remind yourself about a table’s
field or column names and the types of data in each one. Let’s
look at each of the headings:

Field

The name of each field or column within a table

Type

The type of data being stored in the field

Null

Whether the field is allowed to contain a value of NULL

Key

What type of key, if any, has been applied (keys or indexes
in MySQL are quick ways to look up and search for data)

Default

The default value that will be assigned to the field if no
value is specified when a new row is created

Extra

Additional information, such as whether a field is set to
auto-increment

Data Types
In Example 8-3, you may have noticed that three of the table’s
fields were given the data type of VARCHAR, and one was given
the type CHAR. The term VARCHAR stands for VARiable length
CHARacter string, and the command takes a numeric value

that tells MySQL the maximum length allowed for a string
stored in this field.

Both CHAR and VARCHAR accept text strings and impose a limit
on the size of the field. The difference is that every string in a
CHAR field has the specified size. If you put in a smaller string,
it is padded with spaces. A VARCHAR field does not pad the
text; it lets the size of the field vary to fit the text that is
inserted. But VARCHAR requires a small amount of overhead to
keep track of the size of each value. So, CHAR is slightly more
efficient if the sizes are similar in all records, whereas
VARCHAR is more efficient if sizes can vary a lot and get large.
In addition, the overhead causes access to VARCHAR data to be
slightly slower than to CHAR data, but in most use cases that’s
not a concern as the performance difference will not be
noticeable.

Another feature of character and text columns, important for
today’s global web reach, is character sets. These assign
particular binary values to particular characters. The character
set you use for English is obviously different from the one
you’d use for Russian. You can assign the character set to a
character or text column when you create it.

VARCHAR is useful in our example, because it can
accommodate author names and titles of different lengths
while helping MySQL plan the size of the database and
perform lookups and searches more easily. Just be aware that
if you ever attempt to assign a string value longer than the
length allowed, it will be truncated to the maximum length
declared in the table definition.

The year field, however, has predictable values, so instead of
VARCHAR we use the more efficient CHAR(4) data type. The
parameter of 4 allows for 4 bytes of data, supporting all years
from –999 to 9999; a byte comprises 8 bits and can have the
values 00000000 through 11111111, which are 0 to 255 in
decimal.

You could, of course, just store two-digit values for the year,
but if your data is still going to be needed in the following
century, or may otherwise wrap around, it will have to be
sanitized first. Think of the “millennium bug” that would have
caused dates beginning on January 1, 2000, to be treated as
1900 on many of the world’s biggest computer installations.

NOTE
I didn’t use the YEAR data type in the classics table because it supports
only the years 0000 and 1901 through 2155. This is because MySQL
stores the year in a single byte for reasons of efficiency, but it means
that only 256 years are available, and the publication years of the titles
in the classics table are well before 1901. I used the CHAR type instead,
but another option is to use either the INT or the SMALLINT data type.

The CHAR data type

Table 8-6 lists the CHAR data types. Both types offer a
parameter that sets the maximum (or exact) length of the string
allowed in the field. As the table shows, each type has a built-
in maximum number of bytes it can occupy.

Table 8-6. MySQL’s CHAR data types

Data type Bytes used Examples

CHAR(n) Exactly n (<=
255)

CHAR(5) “Hello” uses 5
bytes
CHAR(57) “Goodbye” uses
57 bytes

VARCHAR(n) Up to n (<=
65535)

VARCHAR(7) “Hello” uses 5
bytes
VARCHAR(100) “Goodbye”
uses 7 bytes

The BINARY data type

The BINARY data types (see Table 8-7) store strings of bytes
that do not have an associated character set. For example, you

might use the BINARY data type to store a GIF image.

Table 8-7. MySQL’s BINARY data types

Data type Bytes used Examples

BINARY(n) Exactly n (<=
255)

As CHAR but contains
binary data

VARBINARY(n) Up to n (<=
65535)

As VARCHAR but contains
binary data

The TEXT data types

Character data can also be stored in one of the TEXT fields. The
differences between these fields and VARCHAR fields are small:

TEXT fields cannot have default values.

MySQL indexes only the first n characters of a TEXT
column (you specify n when you create the index).

What this means is that VARCHAR is the better and faster data
type to use if you need to search the entire contents of a field.
If you will never search more than a certain number of leading
characters in a field, use a TEXT data type (see Table 8-8).

Table 8-8. MySQL’s TEXT data types

Data type Bytes used Attributes

TINYTEXT(n) Up to n (<=
255)

Treated as a string with a
character set

TEXT(n) Up to n (<=
65535)

Treated as a string with a
character set

MEDIUMTEXT(n) Up to n (<=
1.67e + 7)

Treated as a string with a
character set

LONGTEXT(n) Up to n (<=
4.29e + 9)

Treated as a string with a
character set

The data types that have smaller maximums are also more
efficient; therefore, you should use the one with the smallest
yet reasonable maximum that you know is enough for any
string you will be storing in the field.

The BLOB data types

The term BLOB stands for Binary Large Object, and therefore,
as you would think, the BLOB data type is most useful for
binary data in excess of 65,536 bytes. The main other
difference between the BLOB and BINARY data types is that
BLOBs cannot have default values. The BLOB data types are
listed in Table 8-9.

Table 8-9. MySQL’s BLOB data types

Data type Bytes used Attributes

TINYBLOB(n) Up to n (<=
255)

Treated as binary data—
no character set

BLOB(n) Up to n (<=
65535)

Treated as binary data—
no character set

MEDIUMBLOB(n) Up to n (<=
1.67e + 7)

Treated as binary data—
no character set

LONGBLOB(n) Up to n (<=
4.29e + 9)

Treated as binary data—
no character set

Numeric data types
MySQL supports various numeric data types, from a single
byte up to double-precision floating-point numbers. Although
the most memory that a numeric field can use up is 8 bytes,
you are well advised to choose the smallest data type that will
adequately handle the largest value you expect. This will help
keep your databases small and quickly accessible.

Table 8-10 lists the numeric data types supported by MySQL
and the ranges of values they can contain. In case you are not
acquainted with the terms, a signed number is one with a
possible range from a minus value, through 0, to a positive
one. An unsigned number has a value ranging from 0 to a
positive one. They can both hold the same number of values;
just picture a signed number as being shifted halfway to the
left so that half its values are negative and half are positive.
Note that floating-point values (of any precision) may only be
signed.

To specify whether a data type is unsigned, use the UNSIGNED
qualifier. The following example creates a table called
tablename with a field in it called fieldname of the data type
UNSIGNED INTEGER:

CREATE TABLE tablename (fieldname INT UNSIGNED);

When creating a numeric field, you can also pass an optional
number as a parameter, like this:

CREATE TABLE tablename (fieldname INT(4));

But you must remember that, unlike with the BINARY and CHAR
data types, this parameter does not indicate the number of
bytes of storage to use. It may seem counterintuitive, but what
the number actually represents is the display width of the data
in the field when it is retrieved. It is commonly used with the
ZEROFILL qualifier, like this:

Table 8-10. MySQL’s numeric data types

Data type
Bytes
used

Minimum value

Signed Unsigne

TINYINT 1 –128 0

SMALLINT 2 –32768 0

MEDIUMINT 3 –8.38e + 6 0

INT / INTEGER 4 –2.15e + 9 0

BIGINT 8 –9.22e + 18 0

FLOAT 4 –3.40e + 38 n/a

DOUBLE / REAL 8 –1.80e + 308 n/a

CREATE TABLE tablename (fieldname INT(4) ZEROFILL);

What this does is cause any numbers with a width of less than
four characters to be padded with one or more zeros, sufficient
to make the display width of the field four characters long.
When a field is already of the specified width or greater, no
padding takes place.

DATE and TIME types
The main remaining data types supported by MySQL relate to
the date and time and can be seen in Table 8-11.

Table 8-11. MySQL’s DATE and TIME data types

Data type Time/date format

DATETIME '0000-00-00 00:00:00'

DATE '0000-00-00'

TIMESTAMP '0000-00-00 00:00:00'

TIME '00:00:00'

YEAR 0000 (Only years 0000 and 1901–2155)

The DATETIME and TIMESTAMP data types display the same
way. The main difference is that TIMESTAMP has a very narrow
range (from the years 1970 through 2037), whereas DATETIME
will hold just about any date you’re likely to specify, unless
you’re interested in ancient history or science fiction.

TIMESTAMP is useful, however, because you can let MySQL set
the value for you. If you don’t specify the value when adding a
row, the current time is automatically inserted. You can also
have MySQL update a TIMESTAMP column each time you
change a row.

The AUTO_INCREMENT attribute

Sometimes you need to ensure that every row in your database
is guaranteed to be unique. You could do this in your program
by carefully checking the data you enter and making sure there
is at least one value that differs in any two rows, but this
approach is error-prone and works only in certain
circumstances. In the classics table, for instance, an author
may appear multiple times. Likewise, the year of publication
will also be frequently duplicated, and so on. It would be hard
to guarantee that you have no duplicate rows. It is also
difficult to guarantee unique rows when multiple scripts can
insert rows into the same table in parallel.

The general solution is to use an extra column just for this
purpose. In a while, we’ll look at using a publication’s ISBN
(International Standard Book Number), but first I’d like to
introduce the AUTO_INCREMENT data attribute.

As its name implies, a column given this attribute will set the
value of its contents to that of the column entry in the
previously inserted row, plus 1. Example 8-5 shows how to
add a new column called id to the table classics with auto-
incrementing.

Example 8-5. Adding the auto-incrementing column id

ALTER TABLE classics ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT

KEY;

This is your introduction to the ALTER command, which is very
similar to CREATE. ALTER operates on an existing table and can
add, change, or delete columns. Our example adds a column
named id with the following characteristics:

INT UNSIGNED

Makes the column take an integer large enough for us to
store more than 4 billion records in the table.

NOT NULL

Ensures that every column has a value. Many programmers
use NULL in a field to indicate that it doesn’t have any
value. But that would allow duplicates, which would
violate the whole reason for this column’s existence, so we
disallow NULL values.

AUTO_INCREMENT

Causes MySQL to set a unique value for this column in
every row, as described earlier. We don’t really have
control over the value that this column will take in each
row, but we don’t care: all we care about is that we are
guaranteed a unique value.

KEY

An auto-increment column is useful as a key, because you
will tend to search for rows based on this column. This
will be explained in “Indexes”.

Each entry in the column id will now have a unique number,
with the first starting at 1 and the others counting upward from
there. And whenever a new row is inserted, its id column will
automatically be given the next number in the sequence.

Rather than applying the column retroactively, you could have
included it by issuing the CREATE command in a slightly
different format. In that case, the command in Example 8-3
would be replaced with Example 8-6. Check the final line in
particular.

Example 8-6. Adding the auto-incrementing id column at table
creation

CREATE TABLE classics (

 author VARCHAR(128),

 title VARCHAR(128),

 type VARCHAR(16),

 year CHAR(4),

 id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY) ENGINE InnoDB;

If you wish to check whether the column has been added, use
the following command to view the table’s columns and data
types:

DESCRIBE classics;

Now that we’ve finished with it, the id column is no longer
needed, so if you created it using Example 8-5, you should
now remove the column using the command in Example 8-7.

Example 8-7. Removing the id column

ALTER TABLE classics DROP id;

Adding data to a table

To add data to a table, use the INSERT command. Let’s see this
in action by populating the table classics with the data from
Table 8-1, using one form of the INSERT command repeatedly
(Example 8-8).

Example 8-8. Populating the classics table

INSERT INTO classics(author, title, type, year)

 VALUES('Mark Twain','The Adventures of Tom

Sawyer','Fiction','1876');

INSERT INTO classics(author, title, type, year)

 VALUES('Jane Austen','Pride and Prejudice','Fiction','1811');

INSERT INTO classics(author, title, type, year)

 VALUES('Charles Darwin','The Origin of

Species','Nonfiction','1856');

INSERT INTO classics(author, title, type, year)

 VALUES('Charles Dickens','The Old Curiosity

Shop','Fiction','1841');

INSERT INTO classics(author, title, type, year)

 VALUES('William Shakespeare','Romeo and Juliet','Play','1594');

After every second line, you should see a Query OK message.
Once all lines have been entered, type the following command,
which will display the table’s contents. The result should look
like Figure 8-4:

SELECT * FROM classics;

Don’t worry about the SELECT command for now—we’ll come
to it in “Querying a MySQL Database”. Suffice it to say that,
as typed, it will display all the data you just entered.

Also, don’t worry if you see the returned results in a different
order; this is normal because the order is unspecified at this
point. Later in this chapter we will learn how to use ORDER BY
to choose the order in which we want results to be returned,
but for now, they can appear in any order.

Figure 8-4. Populating the classics table and viewing its contents

Let’s go back and look at how we used the INSERT command.
The first part, INSERT INTO classics, tells MySQL where to
insert the following data. Then, within parentheses, the four
column names are listed—author, title, type, and year—all
separated by commas. This tells MySQL that these are the
fields into which the data is to be inserted.

The second line of each INSERT command contains the
keyword VALUES followed by four strings within parentheses,
separated by commas. This supplies MySQL with the four
values to be inserted into the four columns previously

specified. (As always, my choice of where to break the lines
was arbitrary.)

Each item of data will be inserted into the corresponding
column, in a one-to-one correspondence. If you accidentally
listed the columns in a different order from the data, the data
would go into the wrong columns. Also, the number of
columns must match the number of data items. (There are
safer ways of using INSERT, which we’ll see soon.)

Renaming a table
Renaming a table, like any other change to the structure or
meta-information about a table, is achieved via the ALTER
command. So, for example, to change the name of the table
classics to pre1900, you would use this command:

ALTER TABLE classics RENAME pre1900;

If you tried the command, you should revert the table name by
entering the following so that later examples in this chapter
will work as printed:

ALTER TABLE pre1900 RENAME classics;

Changing the data type of a column

Changing a column’s data type also uses the ALTER command,
this time in conjunction with the MODIFY keyword. To change
the data type of the column year from CHAR(4) to SMALLINT
(which requires only 2 bytes of storage and so will save disk
space), enter:

ALTER TABLE classics MODIFY year SMALLINT;

When you do this, if the conversion of data type makes sense
to MySQL, it will automatically change the data while keeping
the meaning. In this case, it will change each string to a

comparable integer, so long as the string is recognizable as
referring to an integer.

Adding a new column
Let’s suppose that you have created a table and populated it
with plenty of data, only to discover you need an additional
column. Not to worry. Here’s how to add the new column
pages, which will be used to store the number of pages in a
publication:

ALTER TABLE classics ADD pages SMALLINT UNSIGNED;

This adds the new column with the name pages using the
UNSIGNED SMALLINT data type, sufficient to hold a value of up
to 65,535—hopefully that’s more than enough for any book
ever published!

If you ask MySQL to describe the updated table by using the
DESCRIBE command, as follows, you will see the change has
been made (see Figure 8-5):

DESCRIBE classics;

Figure 8-5. Adding the new pages column and viewing the table

Renaming a column
Looking again at Figure 8-5, you may decide that having a
column named type is confusing, because that is the name used
by MySQL to identify data types. Again, no problem—let’s
change its name to category, like this:

ALTER TABLE classics CHANGE type category VARCHAR(16);

Note the addition of VARCHAR(16) on the end of this
command. That’s because the CHANGE keyword requires the
data type to be specified, even if you don’t intend to change it,
and VARCHAR(16) was the data type specified when that
column was initially created as type.

Removing a column
Actually, upon reflection, you might decide that the page count
column pages isn’t all that useful for this particular database,

so here’s how to remove that column by using the DROP
keyword:

ALTER TABLE classics DROP pages;

WARNING
Remember that DROP is irreversible. You should always use it with
caution, because you could inadvertently delete entire tables (and even
databases) if you are not careful!

Deleting a table
Deleting a table is very easy indeed. But because I don’t want
you to have to reenter all the data for the classics table, let’s
quickly create a new table, verify its existence, and then delete
it. You can do this by typing the commands in Example 8-9.
The result of these four commands should look like Figure 8-
6.

Example 8-9. Creating, viewing, and deleting a table

CREATE TABLE disposable(trash INT);

DESCRIBE disposable;

DROP TABLE disposable;

SHOW tables;

Figure 8-6. Creating, viewing, and deleting a table

Indexes
As things stand, the table classics works and can be searched
without problem by MySQL—until it grows to more than a
couple of hundred rows. At that point, database accesses will
get slower and slower with every new row added, because
MySQL has to search through every row whenever a query is
issued. This is like searching through every book in a library
whenever you need to look something up.

Of course, you don’t have to search libraries that way, because
they have either a card index system or, most likely, a database
of their own. And the same goes for MySQL, because at the
expense of a slight overhead in memory and disk space, you

can create a “card index” for a table that MySQL will use to
conduct lightning-fast searches.

Creating an Index
The way to achieve fast searches is to add an index, either
when creating a table or at any time afterward. But the
decision is not so simple. For example, there are different
index types, such as a regular INDEX, a PRIMARY KEY, or a
FULLTEXT index. Also, you must decide which columns
require an index, a judgment that requires you to predict
whether you will be searching any of the data in each column.
Indexes can get more complicated too, because you can
combine multiple columns in one index. And even when
you’ve decided that, you still have the option of reducing
index size by limiting the amount of each column to be
indexed.

If we imagine the searches that might be made on the classics
table, it becomes apparent that all of the columns may need to
be searched. However, if the pages column created in “Adding
a new column” had not been deleted, it would probably not
have needed an index, as most people would be unlikely to
search for books by the number of pages they have. Anyway,
go ahead and add an index to each of the columns, using the
commands in Example 8-10.

Example 8-10. Adding indexes to the classics table

ALTER TABLE classics ADD INDEX(author(20));

ALTER TABLE classics ADD INDEX(title(20));

ALTER TABLE classics ADD INDEX(category(4));

ALTER TABLE classics ADD INDEX(year);

DESCRIBE classics;

The first two commands create indexes on the author and title
columns, limiting each index to only the first 20 characters.
For instance, when MySQL indexes the following title:

The Adventures of Tom Sawyer

it will actually store in the index only the first 20 characters:

The Adventures of To

This is done to minimize the size of the index and to optimize
database access speed. I chose 20 because it’s likely to be
sufficient to ensure uniqueness for most strings in these
columns. If MySQL finds two indexes with the same contents,
it will have to waste time going to the table itself and checking
the column that was indexed to find out which rows really
matched.

With the category column, currently only the first character is
required to identify a string as unique (F for Fiction, N for
Nonfiction, and P for Play), but I chose an index of four
characters to allow for future categories that may share the
first three characters. You can also reindex this column later,
when you have a more complete set of categories. And finally,
I set no limit to the year column’s index, because it has a
clearly defined length of four characters.

The results of issuing these commands (and a DESCRIBE
command to confirm that they worked) can be seen in
Figure 8-7, which shows the key MUL for each column. This
key means that multiple occurrences of a value may occur
within that column, which is exactly what we want, as authors
may appear many times, the same book title could be used by
multiple authors, and so on.

Figure 8-7. Adding indexes to the classics table

Using CREATE INDEX

An alternative to using ALTER TABLE to add an index is to use
the CREATE INDEX command. They are equivalent, except that
CREATE INDEX cannot be used for creating a PRIMARY KEY
(see “Primary keys”). The format of this command is shown in
the second line of Example 8-11.

Example 8-11. These two commands are equivalent

ALTER TABLE classics ADD INDEX(author(20));

CREATE INDEX author ON classics (author(20));

Adding indexes when creating tables
You don’t have to wait until after creating a table to add
indexes. In fact, doing so can be time-consuming, as adding an
index to a large table can take a very long time. In fact, you
can start planning your tables on paper or using a diagram tool

before you write even a single SQL query. Therefore, let’s
look at a command that creates the table classics with indexes
already in place.

Example 8-12 is a reworking of Example 8-3 in which the
indexes are created at the same time as the table. Note that to
incorporate the modifications made in this chapter, this version
uses the new column name category instead of type and sets
the data type of year to SMALLINT instead of CHAR(4). If you
want to try it out without first deleting your current classics
table, change the word classics in line 1 to something else like
classics1, and then drop classics1 after you have finished with
it.

Example 8-12. Creating the table classics with indexes

CREATE TABLE classics (

 author VARCHAR(128),

 title VARCHAR(128),

 category VARCHAR(16),

 year SMALLINT,

 INDEX(author(20)),

 INDEX(title(20)),

 INDEX(category(4)),

 INDEX(year)) ENGINE InnoDB;

Primary keys
So far, you’ve created the table classics and ensured that
MySQL can search it quickly by adding indexes, but there’s
still something missing. All the publications in the table can be
searched, but there is no single unique key for each publication
to enable instant accessing of a row. The importance of having
a key with a unique value for each row will come up when we
start to combine data from different tables.

“The AUTO_INCREMENT attribute” briefly introduced the
idea of a primary key when creating the auto-incrementing
column id, which could have been used as a primary key for
this table. However, I wanted to reserve that task for a more
appropriate column: the internationally recognized ISBN.

So let’s go ahead and create a new column for this key. Now,
bearing in mind that ISBNs are 13 characters long, you might
think that the following command would do the job:

ALTER TABLE classics ADD isbn CHAR(13) PRIMARY KEY;

But it doesn’t. If you try it, you’ll get an error similar
to Duplicate entry for key 1. The reason is that the table is
already populated with some data, and this command is trying
to add a column with the value NULL to each row, which is not
allowed, as all values must be unique in any column having a
primary key index. If there were no data already in the table,
this command would work just fine, as would adding the
primary key index upon table creation.

In our current situation, we have to create the new column
without an index, populate it with data, and then add the index
retrospectively using the commands in Example 8-13. Luckily,
each of the years is unique in the current set of data, so we can
use the year column to identify each row for updating. Note
that this example uses the UPDATE command and WHERE
keyword, which are explained in more detail in “Querying a
MySQL Database”.

Example 8-13. Populating the isbn column with data and
using a primary key

ALTER TABLE classics ADD isbn CHAR(13);

UPDATE classics SET isbn='9781598184891' WHERE year='1876';

UPDATE classics SET isbn='9780582506206' WHERE year='1811';

UPDATE classics SET isbn='9780517123201' WHERE year='1856';

UPDATE classics SET isbn='9780099533474' WHERE year='1841';

UPDATE classics SET isbn='9780192814968' WHERE year='1594';

ALTER TABLE classics ADD PRIMARY KEY(isbn);

DESCRIBE classics;

Once you have typed these commands, the results should look
like Figure 8-8. Note that the keywords PRIMARY KEY replace
the keyword INDEX in the ALTER TABLE syntax (compare
Examples 8-10 and 8-13).

Figure 8-8. Retrospectively adding a primary key to the classics table

To have created a primary key when the table classics was
created, you could have used the commands in Example 8-14.
Again, rename classics in line 1 to something else if you wish
to try this example, and then delete the test table afterward.

Example 8-14. Creating the table classics with a primary key

CREATE TABLE classics (

 author VARCHAR(128),

 title VARCHAR(128),

 category VARCHAR(16),

 year SMALLINT,

 isbn CHAR(13),

 INDEX(author(20)),

 INDEX(title(20)),

 INDEX(category(4)),

 INDEX(year),

 PRIMARY KEY (isbn)) ENGINE InnoDB;

Creating a FULLTEXT index

Unlike a regular index, MySQL’s FULLTEXT allows super-fast
searches of entire columns of text. It stores every word in

every data string in a special index that you can search using
“natural language,” in a similar manner to using a search
engine.

NOTE
It’s not strictly true that MySQL stores all the words in a FULLTEXT
index, because it has a built-in list of more than 500 words that it
chooses to ignore because they are so common that they aren’t very
helpful for searching anyway—so-called stopwords. This list includes
the, as, is, of, and so on. The list helps MySQL run much more quickly
when performing a FULLTEXT search and keeps database sizes down.

Here are some things that you should know about FULLTEXT
indexes:

Since MySQL 5.6, InnoDB tables can use FULLTEXT
indexes, but prior to that FULLTEXT indexes could be
used only with MyISAM tables. If you need to
convert a table to MyISAM, you can usually use the
MySQL command ALTER TABLE tablename ENGINE
= MyISAM;.

FULLTEXT indexes can be created for CHAR, VARCHAR,
and TEXT columns only.

A FULLTEXT index definition can be given in the
CREATE TABLE statement when a table is created or
added later using ALTER TABLE (or CREATE INDEX).

For large data sets, it is much faster to load your data
into a table that has no FULLTEXT index and then
create the index to avoid constant index updates.

To create a FULLTEXT index, apply it to one or more records,
as in Example 8-15, which adds a FULLTEXT index to the pair
of columns author and title in the classics table (this index is
in addition to the ones already created and does not affect
them).

Example 8-15. Adding a FULLTEXT index to the table classics

ALTER TABLE classics ADD FULLTEXT(author,title);

You can now perform FULLTEXT searches across this pair of
columns. This feature could really come into its own if you
could now add the entire text of these publications to the
database (particularly as they’re out of copyright protection)
and they would be fully searchable. See “MATCH…
AGAINST” for a description of searches using FULLTEXT.

NOTE
If you find that MySQL is running slower than you think it should be
when accessing your database, the problem is usually related to your
indexes. Either you don’t have an index where you need one or the
indexes are not optimally designed. Tweaking a table’s indexes will
often solve such a problem. Performance is beyond the scope of this
book, but in Chapter 9 I’ll give you a few tips so you know what to
look for.

Querying a MySQL Database
So far, we’ve created a MySQL database and tables, populated
them with data, and added indexes to make them fast to
search. Now it’s time to look at how these searches are
performed and the various commands and qualifiers available.

SELECT

As you saw in Figure 8-4, the SELECT command is used to
extract data from a table. In that section, I used its simplest
form to select all data and display it—something you will
never want to do on anything but the smallest tables, because
all the data will scroll by at an unreadable pace. Alternatively,
on Unix/Linux computers, you can tell MySQL to page output
a screen at a time by issuing this command:

pager less;

This pipes output to the less program. To restore standard
output and turn paging off, you can issue this command:

nopager;

Let’s now examine SELECT in more detail. The basic syntax is:

SELECT something FROM tablename;

The something can be an * (asterisk) as you saw before,
which means every column, or you can choose to select only
certain columns. For instance, Example 8-16 shows how to
select just the author and title and just the title and isbn. The
result of typing these commands can be seen in Figure 8-9.

Example 8-16. Two different SELECT statements

SELECT author,title FROM classics;

SELECT title,isbn FROM classics;

Figure 8-9. The output from two different SELECT statements

SELECT COUNT

Another replacement for the something parameter is COUNT,
which can be used in many ways. In Example 8-17, it displays
the number of rows in the table by passing * as a parameter,
which means all rows. As you’d expect, the result returned is
5, as there are five publications in the table.

Example 8-17. Counting rows

SELECT COUNT(*) FROM classics;

SELECT DISTINCT

The DISTINCT qualifier (and its partner DISTINCTROW) allows
you to weed out multiple entries when they contain the same
data. For instance, suppose that you want a list of all authors in
the table. If you select just the author column from a table
containing multiple books by the same author, you’ll normally
see a long list with the same author names over and over. But
by adding the DISTINCT keyword, you can show each author
just once. Let’s test that out by adding another row that repeats
one of our existing authors (Example 8-18).

Example 8-18. Duplicating data

INSERT INTO classics(author, title, category, year, isbn)

 VALUES('Charles Dickens','Little Dorrit','Fiction','1857',

'9780141439969');

Now that Charles Dickens appears twice in the table, we can
compare the results of using SELECT with and without the
DISTINCT qualifier. Example 8-19 and Figure 8-10 show that
the simple SELECT lists Dickens twice, and the command with
the DISTINCT qualifier shows him only once.

Example 8-19. With and without the DISTINCT qualifier

SELECT author FROM classics;

SELECT DISTINCT author FROM classics;

Figure 8-10. Selecting data with and without DISTINCT

DELETE

When you need to remove a row from a table, use the DELETE
command. Its syntax is similar to the SELECT command and
allows you to narrow down the exact row or rows to delete
using qualifiers such as WHERE and LIMIT.

Now that you’ve seen the effects of the DISTINCT qualifier, if
you typed Example 8-18, you should remove Little Dorrit by
entering the commands in Example 8-20.

Example 8-20. Removing the new entry

DELETE FROM classics WHERE title='Little Dorrit';

This example issues a DELETE command for all rows whose
title column contains the exact string Little Dorrit.

The WHERE keyword is very powerful and important to enter
correctly; an error could lead a command to the wrong rows
(or have no effect in cases where nothing matches the WHERE
clause). So now we’ll spend some time on that clause, which is
the heart and soul of SQL.

WHERE

The WHERE keyword enables you to narrow queries by
returning only those where a certain expression is true.
Example 8-20 returns only the rows where the column exactly
matches the string Little Dorrit, using the equality operator
=. Example 8-21 shows a couple more examples of using
WHERE with the = operator.

Example 8-21. Using the WHERE keyword

SELECT author,title FROM classics WHERE author="Mark Twain";

SELECT author,title FROM classics WHERE isbn="9781598184891";

Given our current table, the two commands in Example 8-21
display the same results. But we could easily add more books
by Mark Twain, in which case the first line would display all
the titles he wrote and the second line would continue
(because we know the ISBN is unique) to display The
Adventures of Tom Sawyer. In other words, searches using
a unique key are more predictable, and you’ll see further
evidence later of the value of unique and primary keys.

You can also do pattern matching for your searches using the
LIKE qualifier, which allows searches on parts of strings. This
qualifier should be used with a % character before or after
some text. When placed before a keyword, % means anything
before. After a keyword, it means anything after. Example 8-
22 performs three different queries, one for the start of a
string, one for the end, and one for anywhere in a string.

Example 8-22. Using the LIKE qualifier

SELECT author,title FROM classics WHERE author LIKE "Charles%";

SELECT author,title FROM classics WHERE title LIKE "%Species";

SELECT author,title FROM classics WHERE title LIKE "%and%";

You can see the results of these commands in Figure 8-11. The
first command outputs the publications by both Charles
Darwin and Charles Dickens because the LIKE qualifier was
set to return anything matching the string Charles followed
by any other text. Then just The Origin of Species is
returned, because it’s the only row whose column ends with
the string Species. Last, both Pride and Prejudice and
Romeo and Juliet are returned, because they both matched
the string and anywhere in the column. The % will also match
if there is nothing in the position it occupies; in other words, it
can match an empty string.

Figure 8-11. Using WHERE with the LIKE qualifier

LIMIT

The LIMIT qualifier enables you to choose how many rows to
return in a query and where in the table to start returning them.
When passed a single parameter, it tells MySQL to start at the

beginning of the results and return just the number of rows
given in that parameter. If you pass it two parameters, the first
indicates the offset from the start of the results where MySQL
should start the display, and the second indicates how many to
return. You can think of the first parameter as saying, “Skip
this number of results at the start.”

Example 8-23 includes three commands. The first returns the
first three rows from the table. The second returns two rows
starting at position 1 (skipping one row). The last command
returns a single row starting at position 3 (skipping the first
three rows). Figure 8-12 shows the results of issuing these
three commands.

Example 8-23. Limiting the number of results returned

SELECT author,title FROM classics LIMIT 3;

SELECT author,title FROM classics LIMIT 1,2;

SELECT author,title FROM classics LIMIT 3,1;

WARNING
Be careful with the LIMIT keyword, because offsets start at 0, but the
number of rows to return starts at 1. So, LIMIT 1,3 means return three
rows starting from the second row. You could look at the first
argument as stating how many rows to skip, so that in English the
instruction would be “Return 3 rows, skipping the first 1.”

Figure 8-12. Restricting the rows returned with LIMIT

MATCH…AGAINST

The MATCH...AGAINST construct can be used on columns that
have been given a FULLTEXT index (see “Creating a
FULLTEXT index”). With it, you can make natural-language
searches as you would in an internet search engine. Unlike the
use of WHERE...= or WHERE...LIKE, MATCH...AGAINST lets
you enter multiple words in a search query and checks them
against all words in the FULLTEXT columns. FULLTEXT indexes
are case-insensitive, so it makes no difference what case is
used in your queries.

Assuming that you have added a FULLTEXT index to the author
and title columns, enter the three queries shown in Example 8-
24. The first asks for any rows that contain the word and to be
returned. If you are using the MyISAM storage engine, then
because and is a stopword in that engine, MySQL will ignore
it and the query will always produce an empty set—no matter

what is stored in the column. Otherwise, if you are using
InnoDB, and is an allowed word. The second query asks for
any rows that contain both of the words curiosity and shop
anywhere in them, in any order, to be returned. And the last
query applies the same kind of search for the words tom and
sawyer. Figure 8-13 shows the results of these queries.

Example 8-24. Using MATCH...AGAINST on FULLTEXT indexes

SELECT author,title FROM classics

 WHERE MATCH(author,title) AGAINST('and');

SELECT author,title FROM classics

 WHERE MATCH(author,title) AGAINST('curiosity shop');

SELECT author,title FROM classics

 WHERE MATCH(author,title) AGAINST('tom sawyer');

Figure 8-13. Using MATCH...AGAINST on FULLTEXT indexes

MATCH…AGAINST in Boolean mode

If you wish to give your MATCH...AGAINST queries even more
power, use Boolean mode. This changes the effect of the

standard FULLTEXT query so that it searches for any
combination of search words, instead of requiring all search
words to be in the text. The presence of a single word in a
column causes the search to return the row.

Boolean mode also allows you to preface search words with a
+ or – sign to indicate whether they must be included or
excluded. If normal Boolean mode says, “Any of these words
will do,” a plus sign means, “This word must be present;
otherwise, don’t return the row.” A minus sign means, “This
word must not be present; its presence disqualifies the row
from being returned.”

Example 8-25 illustrates Boolean mode through two queries.
The first asks for all rows containing the word charles and not
the word species to be returned. The second uses double
quotes to request that all rows containing the exact phrase
origin of be returned. Figure 8-14 shows the results of these
queries.

Example 8-25. Using MATCH...AGAINST in Boolean mode

SELECT author,title FROM classics

 WHERE MATCH(author,title)

 AGAINST('+charles -species' IN BOOLEAN MODE);

SELECT author,title FROM classics

 WHERE MATCH(author,title)

 AGAINST('"origin of"' IN BOOLEAN MODE);

Figure 8-14. Using MATCH...AGAINST in Boolean mode

As you would expect, the first request returns only The Old
Curiosity Shop by Charles Dickens; any rows containing the
word species have been excluded, so Charles Darwin’s
publication is ignored.

NOTE
Something of interest to note in the second query: the stopword of is
part of the search string, but it is still used by the search because the
double quotation marks override stopwords.

UPDATE…SET
This construct allows you to update the contents of a field. If
you wish to change the contents of one or more fields, you
first need to focus on just the field or fields to be changed, in
much the same way you use the SELECT command.

Example 8-26 shows the use of UPDATE...SET in two different
ways. You can see the results in Figure 8-15.

Example 8-26. Using UPDATE...SET

UPDATE classics SET author='Mark Twain (Samuel Langhorne

Clemens)'

 WHERE author='Mark Twain';

UPDATE classics SET category='Classic Fiction'

 WHERE category='Fiction';

Figure 8-15. Updating columns in the classics table

In the first query, Mark Twain’s real name of Samuel
Langhorne Clemens was appended to his pen name in
parentheses, which affected only one row. The second query,
however, affected three rows, because it changed all
occurrences of Fiction in the category column to the term
Classic Fiction.

When performing an update, you can also use the qualifiers
you have already seen, such as LIMIT, and the following
ORDER BY and GROUP BY keywords.

ORDER BY

ORDER BY sorts returned results by one or more columns in
ascending or descending order. Example 8-27 shows two such
queries, the results of which can be seen in Figure 8-16.

Example 8-27. Using ORDER BY

SELECT author,title FROM classics ORDER BY author;

SELECT author,title FROM classics ORDER BY title DESC;

Figure 8-16. Sorting the results of requests

As you can see, the first query returns the publications by
author in ascending alphabetical order (the default), and the
second returns them by title in descending order.

If you wanted to sort all the rows by category and then by
descending year of publication (to view the most recent first),
you would issue this query:

SELECT author,title,category,year FROM classics

 ORDER BY category,year DESC;

This shows that each ascending and descending qualifier
applies to a single column. The DESC keyword applies only to

the preceding column, year. Because you allow category to
use the default sort order, it is sorted in ascending order. You
could also have explicitly specified ascending order for that
column, with the same results:

SELECT author,title,category,year FROM classics

 ORDER BY category ASC,year DESC;

GROUP BY

In a similar fashion to ORDER BY, you can group results
returned from queries using GROUP BY, which is good for
retrieving information about a group of data. For example, if
you want to know how many publications of each category are
in the classics table, you can issue the query:

SELECT category,COUNT(author) FROM classics GROUP BY category;

which returns this output:

+-----------------+---------------+

| category | COUNT(author) |

+-----------------+---------------+

| Classic Fiction | 3 |

| Nonfiction | 1 |

| Play | 1 |

+-----------------+---------------+

3 rows in set (0.00 sec)

Joining Tables
It is quite normal to maintain multiple tables within a database,
each holding a different type of information. For example,
consider the case of a customers table that needs to be able to
be cross-referenced with publications purchased from the
classics table. Enter the commands in Example 8-28 to create
this new table and populate it with three customers and their
purchases. Figure 8-17 shows the result.

NOTE
Joining tables is a really big topic that we’re going to cover very
quickly here. In Chapter 9, you’ll also learn more about database
design, which includes a process called database normalization.

Example 8-28. Creating and populating the customers table

CREATE TABLE customers (

 name VARCHAR(128),

 isbn VARCHAR(13),

 PRIMARY KEY (isbn)) ENGINE InnoDB;

INSERT INTO customers(name,isbn)

 VALUES('Joe Bloggs','9780099533474');

INSERT INTO customers(name,isbn)

 VALUES('Mary Smith','9780582506206');

INSERT INTO customers(name,isbn)

 VALUES('Jack Wilson','9780517123201');

SELECT * FROM customers;

Figure 8-17. Creating the customers table

NOTE
There’s also a shortcut for inserting multiple rows of data, as in
Example 8-28, in which you can replace the three separate INSERT
INTO queries with a single one listing the data to be inserted, separated
by commas, like this:

INSERT INTO customers(name,isbn) VALUES

 ('Joe Bloggs','9780099533474'),

 ('Mary Smith','9780582506206'),

 ('Jack Wilson','9780517123201');

Of course, in a proper table containing customers’ details there
also would be addresses, phone numbers, email addresses, and
so on, but they aren’t necessary for this explanation. While
creating the new table, you should have noticed that it has
something in common with the classics table: a column called
isbn. Because it has the same meaning in both tables (an ISBN
refers to a book, and always the same book), we can use this
column to tie the two tables together into a single query, as in
Example 8-29.

Example 8-29. Joining two tables into a single SELECT

SELECT name,author,title FROM customers,classics

 WHERE customers.isbn=classics.isbn;

The result of this operation is:

+-------------+-----------------+------------------------+

| name | author | title |

+-------------+-----------------+------------------------+

| Joe Bloggs | Charles Dickens | The Old Curiosity Shop |

| Mary Smith | Jane Austen | Pride and Prejudice |

| Jack Wilson | Charles Darwin | The Origin of Species |

+-------------+-----------------+------------------------+

3 rows in set (0.00 sec)

See how this query has neatly linked the tables to show the
publications purchased from the classics table by the people in
the customers table?

NATURAL JOIN

Using NATURAL JOIN, you can save yourself some typing and
make queries a little clearer. This kind of join takes two tables
and automatically joins columns that have the same name. So,
to achieve the same results as from Example 8-29, you would
enter:

SELECT name,author,title FROM customers NATURAL JOIN classics;

JOIN…ON
If you wish to specify the column on which to join two tables,
use the JOIN...ON construct, as follows, to achieve results
identical to those of Example 8-29:

SELECT name,author,title FROM customers

 JOIN classics ON customers.isbn=classics.isbn;

Using AS
You can also save yourself some typing and improve query
readability by creating aliases using the AS keyword. Simply
follow a table name with AS and the alias to use. The following
code, therefore, is also identical in action to Example 8-29:

SELECT name,author,title FROM

 customers AS cust, classics AS class WHERE

cust.isbn=class.isbn;

The result of this operation is:

+-------------+-----------------+------------------------+

| name | author | title |

+-------------+-----------------+------------------------+

| Joe Bloggs | Charles Dickens | The Old Curiosity Shop |

| Mary Smith | Jane Austen | Pride and Prejudice |

| Jack Wilson | Charles Darwin | The Origin of Species |

+-------------+-----------------+------------------------+

3 rows in set (0.00 sec)

You can also use AS to assign an alias to a column for the
current query (whether or not joining tables), like this:

SELECT name AS customer FROM customers ORDER BY customer;

which results in the output:

+-------------+

| customer |

+-------------+

| Jack Wilson |

| Joe Bloggs |

| Mary Smith |

+-------------+

3 rows in set (0.00 sec)

Aliases can be particularly useful when you have long queries
that reference the same table names many times.

Using Logical Operators
You can also use the logical operators AND, OR, and NOT in your
MySQL WHERE queries to further narrow your selections.
Example 8-30 shows one instance of each, but you can mix
and match them in any way you need.

Example 8-30. Using logical operators

SELECT author,title FROM classics WHERE

 author LIKE "Charles%" AND author LIKE "%Darwin";

SELECT author,title FROM classics WHERE

 author LIKE "%Mark Twain%" OR author LIKE "%Samuel Langhorne

Clemens%";

SELECT author,title FROM classics WHERE

 author LIKE "Charles%" AND author NOT LIKE "%Darwin";

I’ve chosen the first query because Charles Darwin might be
listed in some rows by his full name, Charles Robert Darwin.
The query returns any publications for which the author
column starts with Charles and ends with Darwin. The second
query searches for publications written using either Mark
Twain’s pen name or his real name, Samuel Langhorne

Clemens. The third query returns publications written by
authors with the first name Charles but not the surname
Darwin.

MySQL Functions
You might wonder why anyone would want to use MySQL
functions when PHP comes with a whole bunch of powerful
functions of its own. The answer is very simple: the MySQL
functions work on the data right there in the database. If you
were to use PHP, you would first have to extract raw data from
MySQL, manipulate it, and then perform the database query
you wanted.

Having functions built into MySQL substantially reduces the
time needed for performing complex queries, as well as their
complexity. You can learn more about all the available string
and date/time functions from the documentation.

Accessing MySQL via phpMyAdmin
Although to use MySQL you have to learn these main
commands and how they work, once you understand them, it
can be much quicker and simpler to use a program such as
phpMyAdmin to manage your databases and tables.

To do this, assuming you have installed AMPPS as described
in Chapter 2, type the following to open the program (see
Figure 8-18):

http://localhost/phpmyadmin

https://oreil.ly/A9Tg9
https://oreil.ly/QzHwB

Figure 8-18. The phpMyAdmin main screen

If prompted (and you haven’t changed them), the default login
and password to enter are root and mysql.

In the lefthand pane of the main phpMyAdmin screen, you can
click to select any tables you wish to work with (although
none will be available until created). You can also click New
to create a new database.

From here, you can perform all the main operations, such as
creating new databases, adding tables, creating indexes, and
much more. To find out more about phpMyAdmin, consult the
documentation.

If you worked with me through the examples in this chapter,
congratulations—it has been quite a journey. You’ve come all
the way from learning how to create a MySQL database,
through issuing complex queries that combine multiple tables,
to using Boolean operators and leveraging MySQL’s various
qualifiers.

In Chapter 9, we’ll start looking at how to approach efficient
database design, advanced SQL techniques, and MySQL
functions and transactions, but first test your knowledge of
what you have learned in this chapter with the following
questions.

https://oreil.ly/AqpnQ

Questions
1. What is the purpose of the semicolon in MySQL

queries?

2. Which command would you use to view the available
databases or tables?

3. How would you create a new MySQL user on the
local host called newuser with a password of newpass
and with access to everything in the database
newdatabase?

4. How can you view the structure of a table?

5. What is the purpose of a MySQL index?

6. What benefit does a FULLTEXT index provide?

7. What is a stopword?

8. Both SELECT DISTINCT and GROUP BY cause the
display to show only one output row for each value in
a column, even if multiple rows contain that value.
What are the main differences between SELECT
DISTINCT and GROUP BY?

9. Using the SELECT...WHERE construct, how would you
return only rows containing the word Langhorne
somewhere in the author column of the classics table
used in this chapter?

10. What needs to be defined in two tables to make it
possible for you to join them together?

See “Chapter 8 Answers” in the Appendix A for the answers to
these questions.

Chapter 9. Mastering
MySQL

Chapter 8 provided you with a good grounding in the practice
of using relational databases with the Structured Query
Language. You’ve learned about creating databases and the
tables they comprise, as well as inserting, looking up,
changing, and deleting data.

Next, we now need to look at how to design databases for
maximum speed and efficiency. For example, how do you
decide what data to place in which table? Over the years, a
number of guidelines have been developed that—if you follow
them—ensure that your databases will be efficient and capable
of growing as you feed them more and more data.

Database Design
It’s very important that you design a database correctly before
you start to create it; otherwise, you are almost certainly going
to have to go back and change it by splitting up some tables,
merging others, and moving various columns to achieve
sensible relationships that MySQL can easily use.

Sitting down with a sheet of paper and a pencil (or a digital
equivalent) and writing a selection of the queries that you
think you and your users are likely to ask is an excellent
starting point. In the case of an online bookstore’s database,
some of your questions could be:

How many authors, books, and customers are in the
database?

Which author wrote a certain book?

Which books were written by a certain author?

What is the most expensive book?

What is the best-selling book?

Which books have not sold this year?

Which books did a certain customer buy?

Which books have been purchased at the same time as
other books?

Of course, you could make many more queries on such a
database, but even this small sample will begin to give you
insights into how to lay out your tables. For example, books
and ISBNs can probably be combined into one table, because
they are closely linked (we’ll examine some of the subtleties
later). In contrast, books and customers should be in separate
tables, because their connection is very loose. A customer can
buy any book, and even multiple copies of a book, yet a book
can be bought by many customers and be ignored by still more
potential customers.

When you plan to do a lot of searches on something, a search
can often benefit from having its own table. And when
couplings between things are loose, it’s best to put them in
separate tables.

Taking into account those simple rules, we can guess we’ll
need at least three tables to accommodate all these queries:

Authors

There will be lots of searches for authors, many of whom
have collaborated on titles, and many of whom will be
featured in collections. Listing all the information about
each author together, linked to that author, will produce
optimal results for searches—hence an Authors table.

Books

Many books appear in different editions. Sometimes they
change publisher, and sometimes they have the same titles
as other unrelated books. So, the links between books and
authors are complicated enough to call for a separate table.

Customers

It’s even more clear why customers should get their own
table, as they are free to purchase any book by any author.

Primary Keys: The Keys to Relational
Databases
Using the power of relational databases, we can define
information for each author, book, and customer in just one
place. Obviously, what interests us is the links between them
—such as who wrote each book and who purchased it—but we
can store that information just by making links between the
three tables. I’ll show you the basic principles, and then it just
takes practice for it to feel natural.

The magic involves giving every author a unique identifier.
We’ll do the same for every book and for every customer. We
saw the means of doing that in Chapter 8: the primary key. For
a book, it makes sense to use the ISBN, although you then
have to deal with multiple editions that have different ISBNs.
For authors and customers, you can just assign arbitrary keys,
which the AUTO_INCREMENT feature that you saw in the last
chapter makes easy.

In short, every table will be designed around some object that
you’re likely to search for a lot—an author, book, or customer,
in this case—and that object will have a primary key. Don’t
choose a key that could possibly have the same value for
different objects. The ISBN is a rare case for which an
industry has provided a primary key that you can rely on to be
unique for each product. Most of the time, you’ll create an
arbitrary key for this purpose, using AUTO_INCREMENT.

GLOBALLY UNIQUE IDENTIFIERS
Some databases and tables may also use globally unique identifiers
called UUIDs (Universally Unique Identifiers) or GUIDs (Globally
Unique Identifiers), a 128-bit label usually formatted as 189aa781-
5d03-11ef-ac40-00155d7f2216. They take up more storage space
and may negatively impact performance if not used correctly and thus
are not common in MySQL databases.

Normalization
The process of separating your data into tables and creating
primary keys is called normalization. Its main goal is to make
sure each piece of information appears in the database only
once. The presence of duplicates creates a strong risk that
you’ll update only one row of duplicated data, creating
inconsistencies in a database and potentially causing serious
errors.

For example, if you list the titles of books in the Authors table
as well as the Books table, and you have to correct a
typographic error in a title, you’ll have to search through both
tables and make sure you make the same change every place
the title is listed. It’s better to keep the title in one place and
use the ISBN in other places.

But in the process of splitting a database into multiple tables,
it’s important not to go too far and create more tables than is
necessary, which would also lead to inefficient design and
slower access.

Luckily, E. F. Codd, the inventor of the relational model,
analyzed the concept of normalization and came up with a
series of so-called normal forms: First, Second, and Third
Normal Form. If you modify a database to satisfy each of
these forms in order, you will ensure that your database is
optimally balanced for fast access and minimum memory and
disk space usage.

To see how the normalization process works, let’s start with
the rather monstrous database in Table 9-1, which shows a

single table containing all of the author names, book titles, and
(fictional) customer details. You could consider it a first
attempt at a table intended to keep track of which customers
have ordered books. Obviously this is an inefficient design,
because data is duplicated all over the place (duplications are
highlighted in bold), but it represents a starting point. Also, to
make this and the following tables less cluttered, ISBN-10
numbers are used in place of ISBN-13.

In the following three sections, we will examine this database
design, and you’ll see how we can improve it by removing the
various duplicate entries and splitting the single table into
multiple tables, each containing one type of data.

First Normal Form

Table 9-1. A highly inefficient design for a database table

Author 1 Author 2 Title ISBN

David Sklar Adam
Trachtenberg

PHP
Cookbook

05961010

Danny
Goodman

 Dynamic
HTML

05965274

Hugh E.
Williams

David Lane PHP and
MySQL

05960054

David Sklar Adam
Trachtenberg

PHP
Cookbook

05961010

Rasmus
Lerdorf

Kevin Tatroe
& Peter
MacIntyre

Programming
PHP

05960068

For a database to satisfy the First Normal Form, it must fulfill
three requirements:

There should be no repeating columns containing the
same kind of data.

All columns should contain a single value.

There should be a primary key to uniquely identify
each row.

Looking at these requirements in order, you should notice
straightaway that both the Author 1 and Author 2 columns
constitute repeating data types. So we already have a target
column for pulling into a separate table, as the repeated Author
columns violate Rule 1.

Second, there are three authors listed for the final book,
Programming PHP. I’ve handled that by making Kevin Tatroe
and Peter MacIntyre share the Author 2 column, which
violates Rule 2—yet another reason to transfer the Author
details to a separate table.

However, Rule 3 is satisfied, because the primary key of ISBN
has already been created.

Table 9-2 shows the result of removing the Author columns
from Table 9-1. Already it looks a lot less cluttered, although
duplications remain (highlighted in bold).

The new Authors table shown in Table 9-3 is small and simple.
It just lists the ISBN of a title along with an author. If a title
has more than one author, additional authors get their own
rows. At first, you may feel ill at ease with this table, because
you can’t tell which author wrote which book. But don’t
worry: MySQL can quickly tell you. All you have to do is tell
it which book you want information for, and MySQL will use

Table 9-2. The result of stripping the Author columns from Tabl

Title ISBN Price
Custom
name

PHP
Cookbook

0596101015 44.99 Emma Br

Dynamic
HTML

0596527403 59.99 Darren R

PHP and
MySQL

0596005436 44.95 Earl B.
Thurston

PHP
Cookbook

0596101015 44.99 Darren R

Programming
PHP

0596006815 39.99 David Mi

its ISBN to search the Authors table in a matter of
milliseconds.

Table 9-3. The new Authors table

ISBN Author

0596101015 David Sklar

0596101015 Adam Trachtenberg

0596527403 Danny Goodman

0596005436 Hugh E. Williams

0596005436 David Lane

0596006815 Rasmus Lerdorf

0596006815 Kevin Tatroe

0596006815 Peter MacIntyre

As I mentioned earlier, the ISBN will be the primary key for
the Books table, when we get around to creating that table. I
mention that here to emphasize that the ISBN is not, however,
the primary key for the Authors table. In the real world, the
Authors table would deserve a primary key, too, so that each
author would have a key to uniquely identify them.

So, in the Authors table, ISBN is just a column that—for the
purposes of speeding up searches—we’ll probably make a key,
but not the primary key. In fact, it cannot be the primary key in
this table because it’s not unique: the same ISBN appears
multiple times whenever two or more authors have
collaborated on a book.

Because we’ll use it to link authors to books in another table,
this column is called a foreign key.

NOTE
Keys (also called indexes) have several purposes in MySQL. The
fundamental reason for defining a key is to make searches faster.
You’ve seen examples in Chapter 8 in which keys are used in WHERE
clauses for searching. But a key can also be useful to uniquely identify
an item. Thus, a unique key is often used as a primary key in one table
and as a foreign key to link rows in that table to rows in another table.

Second Normal Form
The First Normal Form deals with duplicate data (or
redundancy) across multiple columns. The Second Normal
Form is all about redundancy across multiple rows. To achieve
Second Normal Form, your tables must already be in First
Normal Form. Once this has been done, you achieve Second
Normal Form by identifying columns whose data repeats in
different places and then removing them to their own tables.

So, let’s look again at Table 9-2. Notice how Darren Ryder
bought two books, and therefore his details are duplicated.
This tells us that the Customer columns need to be pulled into
their own table. Table 9-4 shows the result of removing the
Customer columns from Table 9-2.

Table 9-4. The new Titles table

ISBN Title Price

0596101015 PHP Cookbook 44.99

0596527403 Dynamic HTML 59.99

0596005436 PHP and MySQL 44.95

0596006815 Programming PHP 39.99

As you can see, all that’s left in Table 9-4 are the ISBN, Title,
and Price columns for four unique books, so this now
constitutes an efficient and self-contained table that satisfies

the requirements of both the First and Second Normal Forms.
Along the way, we’ve managed to reduce the information to
data closely related to book titles. This table could also include
years of publication, page counts, numbers of reprints, and so
on, as these details are also closely related. The only rule is
that we can’t put in any column that could have multiple
values for a single book, because then we’d have to list the
same book in multiple rows and would thus violate Second
Normal Form. Restoring an Author column, for instance,
would violate this normalization.

However, looking at the extracted Customer columns, now in
Table 9-5, we can see that there’s more normalization work to
do, because Darren Ryder’s details are still duplicated. And it
could also be argued that First Normal Form Rule 2 (all
columns should contain a single value) has not been properly
complied with, because the addresses really need to be broken
into separate columns for Address, City, State, and Zip.

What we have to do is split this table further to ensure that
each customer’s details are entered only once. Because the
ISBN is not and cannot be used as a primary key to identify
customers (or authors), a new key must be created.

Table 9-6 is the result of normalizing the Customers table into
both First and Second Normal Forms. Each customer now has
a unique customer number called CustNo that is the table’s

Table 9-5. The customer details from Table 9-2

ISBN
Customer
name

Customer
address

Purchas
date

0596101015 Emma Brown 1565 Rainbow
Road, Los
Angeles, CA
90014

Mar 03 20

0596527403 Darren Ryder 4758 Emily
Drive,
Richmond, VA
23219

Dec 19 20

0596005436 Earl B.
Thurston

862 Gregory
Lane,
Frankfort, KY
40601

Jun 22 20

0596101015 Darren Ryder 4758 Emily
Drive,
Richmond, VA
23219

Dec 19 20

0596006815 David Miller 3647 Cedar
Lane,
Waltham, MA
02154

Jan 16 20

primary key and that will most likely have been created via
AUTO_INCREMENT. All the parts of customer addresses have
also been separated into distinct columns to make them easily
searchable and updatable.

At the same time, to normalize Table 9-6, we had to remove
the information on customer purchases, because otherwise
there would be multiple instances of customer details for each
book purchased. Instead, the purchase data is now placed in a
new table called Purchases (see Table 9-7).

Table 9-6. The new Customers table

CustNo Name Address City

1 Emma Brown 1565 Rainbow
Road

Los Ange

2 Darren Ryder 4758 Emily
Drive

Richmond

3 Earl B.
Thurston

862 Gregory
Lane

Frankfort

4 David Miller 3647 Cedar
Lane

Waltham

Table 9-7. The new Purchases table

CustNo ISBN Date

1 0596101015 Mar 03 2009

2 0596527403 Dec 19 2008

2 0596101015 Dec 19 2008

3 0596005436 Jun 22 2009

4 0596006815 Jan 16 2009

Here the CustNo column from Table 9-6 is reused as a key to
tie the Customers and Purchases tables together. Because the
ISBN column is also repeated here, this table can be linked
with the Authors and Titles tables, too.

The CustNo column may be a useful key in the Purchases
table, but it’s not a primary key. A single customer can buy
multiple books (and even multiple copies of one book), so the
CustNo column is not a primary key. In fact, the Purchases
table has no primary key. That’s all right, because we don’t
expect to need to keep track of unique purchases. If one
customer buys two copies of the same book on the same day,
we’ll just allow two rows with the same information. For easy
searching, we can define both CustNo and ISBN as keys—just
not as primary keys.

NOTE
There are now four tables, one more than the three we had initially
assumed would be needed. We arrived at this decision through the
normalization process, by methodically following the First and Second
Normal Form rules, which made it plain that a fourth table called
Purchases would also be required.

The tables we now have are Authors (Table 9-3), Titles
(Table 9-4), Customers (Table 9-6), and Purchases (Table 9-7),

and we can link each table to any other using either the
CustNo or the ISBN key.

For example, to see which books Darren Ryder has purchased,
you can look him up in Table 9-6, the Customers table, where
you will see his CustNo is 2. Armed with this number, you can
now go to Table 9-7, the Purchases table; looking at the ISBN
column here, you will see that he purchased titles 0596527403
and 0596101015 on December 19, 2008. This looks like a lot
of trouble for a human, but it’s not so hard for MySQL.

To determine what these titles were, you can then refer to
Table 9-4, the Titles table, and see that the books he bought
were Dynamic HTML and PHP Cookbook. Should you wish to
know the authors of these books, you could also use the ISBNs
you just looked up on Table 9-3, the Authors table, and you
would see that ISBN 0596527403, Dynamic HTML, was
written by Danny Goodman, and that ISBN 0596101015, PHP
Cookbook, was written by David Sklar and Adam
Trachtenberg.

Third Normal Form
Once you have a database that complies with both the First
and Second Normal Forms, it is in pretty good shape, and you
might not have to modify it any further. However, if you wish
to be very strict with your database, you can ensure that it
adheres to the Third Normal Form, which requires moving
data that is not directly dependent on the primary key but is
dependent on another value in the table. Such data should be
moved into separate tables, according to the dependence.

For example, in Table 9-6, the Customers table, it could be
argued that the State, City, and Zip keys are not directly related
to each customer, because many other people will have the
same details in their addresses, too. However, they are directly
related to each other, in that the Address relies on the City, and
the City relies on the State.

Therefore, to satisfy Third Normal Form for Table 9-6, you
would need to split it into Tables 9-8 through 9-11.

Table 9-9. Third Normal Form Zip
codes table

Zip CityID

90014 1234

23219 5678

40601 4321

02154 8765

Table 9-8. Third Normal Form Customers table

CustNo Name Address Zip

1 Emma Brown 1565 Rainbow
Road

90014

2 Darren Ryder 4758 Emily
Drive

23219

3 Earl B.
Thurston

862 Gregory
Lane

40601

4 David Miller 3647 Cedar
Lane

02154

Table 9-10. Third Normal Form Cities table

CityID Name StateID

1234 Los Angeles 5

5678 Richmond 46

4321 Frankfort 17

8765 Waltham 21

Table 9-11. Third Normal Form States table

StateID Name Abbreviation

5 California CA

46 Virginia VA

17 Kentucky KY

21 Massachusetts MA

So, how would you use this set of four tables instead of the
single Table 9-6? Well, you would look up the Zip code in
Table 9-8 and then find the matching CityID in Table 9-9.
Given this information, you could look up the city Name in
Table 9-10 and then also find the StateID, which you could use
in Table 9-11 to look up the state’s Name.

Although using the Third Normal Form in this way may seem
like overkill, it can have advantages. For example, look at
Table 9-11, where it has been possible to include both a state’s
name and its two-letter abbreviation. It could also contain
population details and other demographics, if you desired.

NOTE
Table 9-10 could also contain even more localized demographics that
could be useful to you and/or your customers. By splitting up these
pieces of data, you can make it easier to maintain your database in the
future, should it be necessary to add columns.

Deciding whether to use the Third Normal Form can be tricky.
Your evaluation should rest on what data you may need to add
at a later date. If you are absolutely certain that the name and
address of a customer is all that you will ever require, you
probably will want to leave out this final normalization stage.

On the other hand, suppose you are writing a database for a
large organization such as the US Postal Service. What would
you do if a city were to be renamed? With a table such as
Table 9-6, you would need to perform a global search-and-
replace on every instance of that city. But if you have your
database set up according to the Third Normal Form, you
would have to change only a single entry in Table 9-10 for the
change to be reflected throughout the entire database.

Therefore, I suggest that you ask yourself two questions to
help you decide whether to perform a Third Normal Form
normalization on any table:

Is it likely that many new columns will need to be
added to this table?

Could any of this table’s fields require a global update
at any point?

If either of the answers is yes, you should consider performing
this final stage of normalization.

When Not to Use Normalization
Now that you know all about normalization, I’m going to tell
you why you should not implement these rules on high-traffic
sites. That’s right—you should never fully normalize your
tables on sites that will cause MySQL to thrash.

Normalization generally requires spreading data across
multiple tables, and multi-table queries and joins are, by
nature, less efficient than single-table queries, and that might
produce challenges at scale. On a very popular site, if you
have normalized tables, your database access will slow down
considerably once you get above a few dozen concurrent
users, because they will be creating hundreds of database
accesses between them. In fact, I would go so far as to say you
should denormalize any commonly looked-up data as much as
you can.

You see, if you have data duplicated across your tables, you
can substantially reduce the number of additional requests that
need to be made, because most of the data you want is
available in each table. This means that you can simply add an
extra column to a query and that field will be available for all
matching results.

Of course, you have to deal with the downsides previously
mentioned, such as using large amounts of disk space and
ensuring that you update every single duplicate copy of the
data when it needs modifying.

Multiple updates can be computerized, though. MySQL
provides a feature called triggers that make automatic changes
to the database in response to changes you make. (Triggers
are, however, beyond the scope of this book.) Another way to
propagate redundant data is to set up a PHP program to run
regularly and keep all copies in sync. The program reads
changes from a “main” table and updates all the others. (You’ll
see how to access MySQL from PHP in Chapter 10.)

However, until you are very experienced with MySQL, I
recommend that you fully normalize all your tables (at least to
First and Second Normal Form), as this will instill the habit
and help you create effective structure. Only when you start to
see MySQL logjams should you consider looking at
denormalization.

Relationships
MySQL is called a relational database management system
because its tables store not only data but also the relationships
among the data. There are three categories of relationships.

One-to-One
A one-to-one relationship is like a monogamous marriage:
each item has a relationship to only one item of the other type.
This is surprisingly rare. For instance, an author can write
multiple books, a book can have multiple authors, and even an
address can be associated with multiple customers. The best
example of a one-to-one relationship in this chapter thus far is
the relationship between the name of a state and its two-
character abbreviation.

However, for the sake of argument, let’s assume there can
always be only one customer at any address. In such a case,
the Customers–Addresses relationship in Figure 9-1 is a one-
to-one relationship: only one customer lives at each address,
and each address can have only one customer.

Figure 9-1. The Customers table, Table 9-8, split into two tables

Usually, when two items have a one-to-one relationship, you
just include them as columns in the same table. There are two
reasons for splitting them into separate tables:

You want to be prepared in case the relationship
changes later and is no longer one-to-one.

The table has a lot of columns, and you think that
performance or maintenance would be improved by
splitting it.

Of course, when you build your own databases in the real
world, you will have to create one-to-many Customer–Address
relationships (one address, many customers).

One-to-Many
One-to-many (or many-to-one) relationships occur when one
row in one table is linked to many rows in another table. You
have already seen how Table 9-8 would take on a one-to-many
relationship if multiple customers were allowed at the same
address, which is why it would have to be split up if that were
the case.

So, looking at Table 9-8a within Figure 9-1, you can see that it
shares a one-to-many relationship with Table 9-7 because
there is only one of each customer in Table 9-8a. However
Table 9-7, the Purchases table, can (and does) contain more
than one purchase from a given customer. Therefore, one
customer has a relationship with many purchases.

You can see these two tables alongside each other in Figure 9-
2, where the dashed lines joining rows in each table start from
a single row in the lefthand table but can connect to more than
one row in the righthand table. This one-to-many relationship
is also the preferred scheme to use when describing a many-to-
one relationship, in which case you would normally swap the
left and right tables to view them as a one-to-many
relationship.

Figure 9-2. Illustrating the relationship between two tables

To represent a one-to-many relationship in a relational
database, create a table for the “many” and a table for the
“one.” The table for the “many” must contain a column that
lists the primary key from the “one” table. Thus, the Purchases
table will contain a column that lists the primary key of the
customer.

Many-to-Many
In a many-to-many relationship, many rows in one table are
linked to many rows in another table. To create this
relationship, add a third table containing the same key column
from each of the other tables. This third table contains nothing
else, as its sole purpose is to link the other tables.

Table 9-12 is such a table. It was extracted from Table 9-7, the
Purchases table but omits the purchase date information. It
contains a copy of the ISBN of every title sold, along with the
customer number of each purchaser.

Table 9-12. An intermediary table

CustNo ISBN

1 0596101015

2 0596527403

2 0596101015

3 0596005436

4 0596006815

With this intermediary table in place, you can traverse all the
information in the database through a series of relations. You
can take an address as a starting point and find out the authors
of any books purchased by the customer living at that address.

For example, let’s suppose that you want to find out about
purchases in the 23219 zip code. Look up that zip code in
Table 9-8b, and you’ll find that customer number 2 has bought
at least one item from the database. At this point, you can use
Table 9-8a to find out that customer’s name or use the new
intermediary Table 9-12 to see the book(s) purchased.

From here, you can see that two titles were purchased and
follow them back to Table 9-4 to find the titles and prices of
these books or to Table 9-3 to see the authors.

If you’re thinking this is really combining multiple one-to-
many relationships, you are absolutely correct. To illustrate,
Figure 9-3 brings three tables together.

Figure 9-3. Creating a many-to-many relationship via a third table

Follow any zip code in the lefthand table to the associated
customer IDs. From there, you can link to the middle table,
which joins the left and right tables by linking customer IDs
and ISBNs. Now all you have to do is follow an ISBN over to
the righthand table to see which book it relates to.

You can also use the intermediary table to work your way
backward from book titles to zip codes. The Titles table can
tell you the ISBN, which you can use in the middle table to
find the ID numbers of customers who bought the book, and
finally you can use the Customers table to match the customer
ID numbers to the customers’ zip codes.

Databases and Privacy
An interesting aspect of using relations is that you can
accumulate a lot of information about some item—such as a
customer—without actually knowing who that customer is.
Note that in the previous example we went from customers’
zip codes to customers’ purchases, and back again, without
knowing the name of a customer. Databases can be used to
track people, but they also can be used to help preserve
people’s privacy while still finding useful information, by
returning information about a purchase without revealing other
customer details, for example.

Transactions

In some applications, it is vitally important that a sequence of
queries runs in the correct order and that every single query
successfully completes. For example, suppose you are creating
a sequence of queries to transfer funds from one bank account
to another. You would not want either of the following events
to occur:

You add the funds to the second account, but when
you try to subtract them from the first account, the
update fails, and now both accounts have the funds.

You subtract the funds from the first bank account,
but the update request to add them to the second
account fails, and the funds have disappeared into thin
air.

As you can see, not only is it important how you order queries
in this type of transaction but it is also vital that all parts of the
transaction complete successfully. But how can you ensure this
happens, because surely after a query has occurred, it cannot
be undone? Do you have to keep track of all parts of a
transaction and then undo them all one at a time if any one
fails? The answer is absolutely not, because MySQL comes
with powerful transaction-handling features to cover just these
types of eventualities.

In addition, transactions allow concurrent access to a database
by many users or programs at the same time. MySQL handles
this seamlessly by ensuring that all transactions are queued
and that users or programs take their turns and don’t tread on
each other’s toes.

Transaction Storage Engines
To be able to use MySQL’s transaction facility, you have to be
using MySQL’s InnoDB storage engine (which is the default
from version 5.5 onward). If you are not sure which version of
MySQL your code will be running on, rather than assuming

InnoDB is the default engine, you can force its use when
creating a table, as follows.

Create a table of bank accounts by typing the commands in
Example 9-1. (Remember that to do this, you will need access
to the MySQL command line or a graphical tool, and you must
also have already selected a suitable database in which to
create this table.)

Example 9-1. Creating a transaction-ready table

CREATE TABLE accounts (

 number INT, balance INT, PRIMARY KEY(number)

) ENGINE InnoDB;

DESCRIBE accounts;

The final line of this example displays the contents of the new
table so you can ensure that it was correctly created. The
output from it should look like this:

+---------+---------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+---------+------+-----+---------+-------+

| number | int(11) | NO | PRI | NULL | |

| balance | int(11) | YES | | NULL | |

+---------+---------+------+-----+---------+-------+

2 rows in set (0.00 sec)

Now let’s create two rows within the table so that you can
practice using transactions. Type the commands in Example 9-
2.

Example 9-2. Populating the accounts table

INSERT INTO accounts(number, balance) VALUES(12345, 1025);

INSERT INTO accounts(number, balance) VALUES(67890, 140);

SELECT * FROM accounts;

The third line displays the contents of the table to confirm that
the rows were correctly inserted. The output should look like
this:

+--------+---------+

| number | balance |

+--------+---------+

| 12345 | 1025 |

| 67890 | 140 |

+--------+---------+

2 rows in set (0.00 sec)

With this table created and prepopulated, you are ready to start
using transactions.

Using START TRANSACTION
Transactions in MySQL start with either a START
TRANSACTION or a BEGIN statement, where the former is a
standard SQL syntax. Type the commands in Example 9-3 to
send a transaction to MySQL.

Example 9-3. A MySQL transaction

START TRANSACTION;

UPDATE accounts SET balance=balance+25 WHERE number=12345;

COMMIT;

SELECT * FROM accounts;

The result of this transaction is displayed by the final line and
should look like this:

+--------+---------+

| number | balance |

+--------+---------+

| 12345 | 1050 |

| 67890 | 140 |

+--------+---------+

2 rows in set (0.00 sec)

As you can see, the balance of account number 12345 was
increased by 25 and is now 1050. You also may have noticed
the COMMIT command in Example 9-3, which is explained
next.

Using COMMIT

When you are satisfied that a series of queries in a transaction
has successfully completed, issue a COMMIT command to
commit all the changes to the database. Until it receives a
COMMIT, MySQL considers all the changes you make to be
temporary. This feature gives you the opportunity to cancel a
transaction by not sending a COMMIT but issuing a ROLLBACK
command instead.

Using ROLLBACK
Using the ROLLBACK command, you can tell MySQL to forget
all the queries made since the start of a transaction and to
cancel the transaction. See this in action by entering the funds
transfer transaction in Example 9-4.

Example 9-4. A funds transfer transaction

START TRANSACTION;

UPDATE accounts SET balance=balance-250 WHERE number=12345;

UPDATE accounts SET balance=balance+250 WHERE number=67890;

SELECT * FROM accounts;

Once you have entered these lines, you should see this result:

+--------+---------+

| number | balance |

+--------+---------+

| 12345 | 800 |

| 67890 | 390 |

+--------+---------+

2 rows in set (0.00 sec)

The first bank account now has a value that is 250 less than
before, and the second has been incremented by 250; you have
transferred a value of 250 between them. But let’s assume that
something went wrong and you wish to undo this transaction.
All you have to do is issue the commands in Example 9-5.

Example 9-5. Canceling a transaction using ROLLBACK

ROLLBACK;

SELECT * FROM accounts;

You should now see the following output, showing that the
two accounts have had their previous balances restored, due to
the entire transaction being canceled via the ROLLBACK
command:

+--------+---------+

| number | balance |

+--------+---------+

| 12345 | 1050 |

| 67890 | 140 |

+--------+---------+

2 rows in set (0.00 sec)

Using EXPLAIN
MySQL comes with a powerful tool for investigating how the
queries you issue to it are interpreted. Using EXPLAIN, you can
get a snapshot of any query to find out whether you could
issue it in a better or more efficient way. Example 9-6 shows
how to use this command with the accounts table you created
earlier.

Example 9-6. Using the EXPLAIN command

EXPLAIN SELECT * FROM accounts WHERE number='12345';

The results of this EXPLAIN command should look like:

+--+------+--------+------+-----+--------+-------+----+-----+---

-+------+-----+

|id|select|table |part- |type |possible|key |key |ref

|rows|fil- |Extra|

| |_type | |itions| |_keys | |_len| |

|tered | |

+--+------+--------+------+-----+--------+-------+----+-----+---

-+------+-----+

|1 |SIMPLE|accounts|NULL |const|PRIMARY |PRIMARY|4 |const|1

|100.00|NULL |

+--+------+--------+------+-----+--------+-------+----+-----+---

-+------+-----+

1 row in set (0.00 sec)

Here is an explanation of the information that MySQL is
giving you:

select_type

The selection type is SIMPLE. If you were joining tables
together, this would show the join type.

table

The current table being queried is accounts.

type

The query type is const. From the least efficient to the
most efficient type, the possible values can be ALL, index,
range, ref, eq_ref, const, system, and NULL.

possible_keys

There is a possible PRIMARY key, which means that
accessing should be fast.

key

The key actually used is PRIMARY. This is good.

key_len

The key length is 4. This is the number of bytes of the
index that MySQL will use.

ref

The ref column displays which columns or constants are
used with the key. In this case, a constant key is being
used.

rows

The number of rows that need to be searched by this query
is 1. This is good.

PARTITIONS
Partitioning allows you to store parts of individual tables in separate
files called partitions, used to store more data in one table than one
disk can handle.

Whenever you have a query that seems to be taking longer to
execute than you think it should, try using EXPLAIN to see
where you can optimize it. You will discover which keys (if
any) are being used, their lengths, and so on, and you will be
able to adjust your query or the design of your table(s)
accordingly.

NOTE
When you have finished experimenting with the temporary accounts
table, you can remove it by entering the following command:

DROP TABLE accounts;

Backing Up and Restoring
Whatever kind of data you are storing in your database, it has
some value, even if it’s only the cost of the time for reentering
it should the hard disk fail. Therefore, it’s important that you
keep backups to protect your investment. In addition, there
will be times when you have to migrate your database to a new
server; the best way to do this is to back it up first. It is
important that you test your backups from time to time to
ensure they are valid and will work if they need to be used.

Thankfully, backing up and restoring MySQL data is easy with
the mysqldump command.

Using mysqldump

With mysqldump, you can dump a database or collection of
databases into one or more files containing all the instructions
necessary to re-create all your tables and repopulate them with
your data. This command can also generate files in CSV
(comma-separated values) and other delimited text formats, or
even in XML. Its main drawback is that you must make sure
that no one writes to a table while you’re backing it up. There
are various ways to do this, but the easiest is to shut down the
MySQL server before running mysqldump and start the server
again after mysqldump finishes.

Alternatively, you can lock the tables you are backing up
before running mysqldump. To lock tables for reading (as we
want to read the data), from the MySQL command line issue
this command:

LOCK TABLES tablename1 READ, tablename2 READ ...

Then, to release the lock(s), enter:

UNLOCK TABLES;

By default, the output from mysqldump is simply printed out,
but you can capture it in a file through the > redirect symbol.

The basic format of the mysqldump command is:

mysqldump -u user -ppassword database

However, before you can dump the contents of a database, you
must make sure that mysqldump is in your path or else specify
its location as part of your command. Table 9-13 shows the
likely locations of the program for the different installations
and operating systems covered in Chapter 2. If you have a
different installation, it may be in a slightly different location.

Table 9-13. Likely locations of mysqldump for different
installations

Operating system and
program Likely folder location

Windows AMPPS C:\Program
Files\Ampps\mysql\bin

macOS AMPPS /Applications/ampps/mysql/bin

Linux /usr/bin

So, to dump the contents of the publications database that you
created in Chapter 8 to the screen, first exit MySQL and then
enter the command in Example 9-7 (specifying the full path to
mysqldump if necessary).

Example 9-7. Dumping the publications database to screen

mysqldump -u user -ppassword publications

Make sure that you replace user and password with the
correct details for your installation of MySQL. If no password
is set for the user, you can omit that part of the command, but
the -u user part is mandatory unless you have root access
without a password and are executing as root (not
recommended). The result of issuing this command will look
something like Figure 9-4.

Figure 9-4. Dumping the publications database to the screen

Creating a Backup File
Now that you have mysqldump working and have verified it
outputs correctly to the screen, you can send the backup data
directly to a file using the > redirect symbol. Assuming that
you wish to call the backup file publications.sql, type the
command in Example 9-8 (remembering to replace user and
password with the correct details).

NOTE
The command in Example 9-8 stores the backup file into the current
directory. If you need it to be saved elsewhere, you should insert a
filepath before the filename. You must also ensure that the directory
you are backing up to has the right permissions set to allow the file to
be written but not to be accessed by any unprivileged user!

Example 9-8. Dumping the publications database to a file

mysqldump -u user -ppassword publications > publications.sql

NOTE
Sometimes you may get errors accessing MySQL using Windows
PowerShell, which you will not see in a standard Command Prompt
window.

If you echo the backup file to screen or load it into a text
editor, you will see that it comprises sequences of SQL
commands such as:

DROP TABLE IF EXISTS 'classics';

CREATE TABLE 'classics' (

 'author' varchar(128) default NULL,

 'title' varchar(128) default NULL,

 'category' varchar(16) default NULL,

 'year' smallint(6) default NULL,

 'isbn' char(13) NOT NULL default '',

 PRIMARY KEY ('isbn'),

 KEY 'author' ('author'(20)),

 KEY 'title' ('title'(20)),

 KEY 'category' ('category'(4)),

 KEY 'year' ('year'),

 FULLTEXT KEY 'author_2' ('author','title')

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

This is smart code that can be used to restore a database from a
backup, even if it currently exists; it will first drop any tables
that need to be re-created, thus avoiding potential MySQL
errors.

Backing up a single table
To back up only a single table from a database (such as the
classics table from the publications database), you should first
lock the table from within the MySQL command line, by
issuing a command such as:

LOCK TABLES publications.classics READ;

This ensures that MySQL remains running for read purposes
but that writes cannot be made. Then, while keeping the
MySQL command line open, use another terminal window to
issue the following command from the operating system
command line:

mysqldump -u user -ppassword publications classics >

classics.sql

You must now release the table lock by entering the following
command from the MySQL command line in the first terminal
window, which unlocks all tables that have been locked during
the current session:

UNLOCK TABLES;

Backing up all databases
If you want to back up all your MySQL databases at once
(including the system databases such as mysql), you can use a
command such as the one in Example 9-9, which would enable
you to restore an entire MySQL database installation.
Remember to use locking where required.

Example 9-9. Dumping all the MySQL databases to file

mysqldump -u user -ppassword --all-databases > all_databases.sql

NOTE
Of course, there’s a lot more than just a few lines of SQL code in
backed-up database files. I recommend that you take a few minutes to
examine a couple to familiarize yourself with the types of commands
that appear in backup files and how they work.

Restoring from a Backup File
To perform a restore from a file, call the mysql executable,
passing it the file to restore from using the < symbol. So, to
recover all databases that you dumped using the --all-
databases option, use a command such as that in Example 9-
10.

Example 9-10. Restoring an entire set of databases

mysql -u user -ppassword < all_databases.sql

To restore a single database, use the -D option followed by the
name of the database, as in Example 9-11, where the

publications database is being restored from the backup made
in Example 9-8.

Example 9-11. Restoring the publications database

mysql -u user -ppassword -D publications < publications.sql

To restore a single table to a database, use a command such as
that in Example 9-12, where just the classics table is being
restored to the publications database.

Example 9-12. Restoring the classics table to the publications
database

mysql -u user -ppassword -D publications < classics.sql

Dumping Data in CSV Format
As previously mentioned, the mysqldump program is very
flexible and supports various types of output, such as the CSV
format, which contains just the data and no commands. You
might use it to import data into a spreadsheet or an analytical
tool, among other purposes. Example 9-13 shows how you can
dump the data from the classics and customers tables in the
publications database to the files classics.txt and customers.txt
in the folder c:/temp. On macOS or Linux systems, you should
modify the destination path to an existing folder.

Example 9-13. Dumping data to CSV-format files

mysqldump -u user -ppassword --no-create-info --tab=c:/temp

 --fields-terminated-by=',' publications

This command is quite long and is shown here wrapped over
two lines, but you must type it all as a single line. The result
is:

Mark Twain (Samuel Langhorne Clemens)','The Adventures of Tom

Sawyer',

 'Classic Fiction','1876','9781598184891

Jane Austen','Pride and Prejudice','Classic

Fiction','1811','9780582506206

Charles Darwin','The Origin of

Species','Nonfiction','1856','9780517123201

Charles Dickens','The Old Curiosity Shop','Classic

Fiction','1841','9780099533474

William Shakespeare','Romeo and

Juliet','Play','1594','9780192814968

Mary Smith','9780582506206

Jack Wilson','9780517123201

Planning Your Backups
The more valuable your data, the more often you should back
it up, and the more copies you should make. If your database
gets updated at least once a day, you should back it up daily.
If, on the other hand, it is not updated very often, you can get
by with less frequent backups.

NOTE
Consider making multiple backups and storing them in different
locations. If you have several servers, it is a simple matter to copy
your backups between them. You also should make physical backups
on removable hard disks, thumb drives, and so on, and keep these in
separate locations—preferably somewhere like a fireproof safe.

It’s important to test restoring a database once in a while, too, to make
sure your backups are done correctly. You also want to be familiar
with restoring a database because you may have to do so when you are
stressed and in a hurry, such as after a power failure that takes down
the website. You can restore a database to a private server and run a
few SQL commands to make sure the data is as it should be.

Once you’ve digested the contents of this chapter, you will be
proficient in using both PHP and MySQL. You can check your
understanding using the following questions. Chapter 10
introduces you to accessing MySQL using PHP.

Questions
1. What does the word relationship mean in reference to

a relational database?

2. What is the term for the process of removing
duplicate data and optimizing tables?

3. What are the three rules of the First Normal Form?

4. How can you make a table satisfy the Second Normal
Form?

5. What do you put in a column to tie together two
tables that contain items having a one-to-many
relationship?

6. How can you create a database with a many-to-many
relationship?

7. What commands initiate and end a MySQL
transaction?

8. What feature does MySQL provide to enable you to
examine how a query will work in detail?

9. What command would you use to back up the
database publications to a file called publications.sql?

See “Chapter 9 Answers” in the Appendix A for the answers to
these questions.

Chapter 10. Accessing
MySQL Using PHP

If you worked through the previous chapters, you’re now
proficient in using both MySQL and PHP. In this chapter, you
will learn how to integrate the two by using PHP’s built-in
functions to access MySQL.

Querying a MySQL Database with
PHP
The reason for using PHP as an interface to MySQL is to
format the results of SQL queries in a form visible in a web
page. As long as you can log in to your MySQL installation
using your username and password, you can also do so from
PHP.

However, instead of using MySQL’s command line to enter
instructions and view output, you will create query strings that
are passed to MySQL. When MySQL returns its response, it
will come as a data structure that PHP can recognize instead of
the formatted output you see when you work on the command
line. Further PHP commands can retrieve the data and format
it for the web page.

The Process
The process of using MySQL with PHP is:

1. Connect to MySQL and select the database to use.

2. Build a query string.

3. Execute the query.

4. Fetch the results and output them to a web page.

5. Repeat steps 2 to 4 until all desired data has been
retrieved.

6. Disconnect from MySQL.

We’ll work through these steps in turn, but first it’s important
to set up your login details securely so people snooping around
on your system won’t have access to your database.

Creating a Login File
Most websites developed with PHP contain multiple program
files that will require access to MySQL and will thus need the
login and password details. Therefore, it’s sensible to create a
single file to store these and then include that file wherever it’s
needed. Example 10-1 shows such a file, which I’ve called
login.php.

Example 10-1. The login.php file

<?php // login.php

 $host = 'localhost'; // Change as necessary

 $db = 'publications'; // Change as necessary

 $user = 'root'; // Change as necessary

 $pass = 'mysql'; // Change as necessary

 $chrs = 'utf8mb4';

 $attr = "mysql:host=$host;dbname=$db;charset=$chrs";

 $opts =

 [

 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION,

 PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC,

 PDO::ATTR_EMULATE_PREPARES => false,

];

?>

Either type the example or edit the file (from the GitHub
repo), replacing the username root and password of mysql
with the values you use for your MySQL database (and the
host and database name too, if necessary), and save it to the
document root directory you set up in Chapter 2. We’ll be
using the file shortly.

https://github.com/RobinNixon/lpmj7

PDO, as seen in the $opts array, stands for PHP Data Objects
and is a built-in data access library that uses the same
functions regardless of which database you’re using.

The hostname localhost should work as long as you’re using
a MySQL database on your local system, and the database
publications should work if you’re using the same examples
I’ve used so far.

The enclosing <?php and ?> tags are especially important for
the login.php file in Example 10-1, because they mean that the
lines between can be interpreted only as PHP code. If you
were to leave them out and someone were to call up the file
directly from your website, it would display as text and reveal
your secrets. But, with the tags in place, all that person will see
is a blank page. The file will correctly include your other PHP
files.

DIRECT INCLUSION OF LOGIN DETAILS
This chapter includes placing a username and password in the
login.php file to make the following short examples work as-is from
the repo. At this point you are simply learning about MySQL itself and
how it works on a very simple set of non-valuable data in a
nonproduction environment. Please be aware that real-world projects
must never place secure information anywhere that it might be
discovered and compromise your web server or data. Hacking
prevention and security are covered toward the end of this chapter, and
better ways of handling, storing, and processing sensitive information
are provided in Chapter 12, once you have learned the information and
techniques needed to understand how to do this.

The $host variable will tell PHP which computer to use when
connecting to a database. This is required because you can
access MySQL databases on any computer connected to your
PHP installation, and that potentially includes any host
anywhere on the web. However, the examples in this chapter
will be working on the local server. So, in place of specifying
a domain such as mysql.myserver.com, you can use the word
localhost (or the IP address 127.0.0.1).

The database we’ll be using, in the string variable $db, is the
one called publications that we created in Chapter 8 (if you’re
using a different database—one provided by your server
administrator—you’ll have to modify login.php accordingly).

$chrs stands for character set, and in this case we are using
utf8mb4, a Unicode character set that includes Latin letters,
digits, punctuation signs, European and Middle East script
letters as well as Korean, Chinese, and Japanese ideographs,
and emoji. Characters are encoded using UTF-8 and can take
up to 4 bytes per character. utf8mb4 is the recommended
UTF-8 character set in MySQL.

NOTE
In earlier versions of the book we used direct access to MySQL, which
was not at all secure, and later switched to using mysqli, which was
more secure. But, as they say, time marches on, and now the most
secure and easiest way yet to access a MySQL database from PHP is
PDO, which we now use by default in this edition of the book as a
lightweight, consistent interface for accessing databases in PHP. Each
database driver that implements the PDO interface can expose
database-specific features as regular extension functions.

Finally, $attr and $opts contain additional options needed to
access the database.

WARNING
Never store usernames and passwords in the clear on any production
project. Refer to Chapter 12 for more on encryption, salting, and
security.

Connecting to a MySQL Database
Now that you have saved the login.php file, you can include it
in any PHP files that will need to access the database by using
the require_once statement. This is preferable to an include
statement, as it will generate a fatal error if the file is not
found—and believe me, not finding the file containing the
login details to your database is a fatal error.

Also, using require_once instead of require means that the
file will be read in only when it has not previously been
included, which prevents wasteful duplicate disk accesses.
Example 10-2 shows the code to use.

Example 10-2. Connecting to a MySQL server using PDO
<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e->getCode());

 }

?>

NOTE
Resist the temptation to output the contents of any error message
received from MySQL in your production project. Rather than helping
your users, you could give away sensitive information to hackers, such
as login details. Instead, just guide the user with information on how to
overcome their difficulty based on what the error message reports to
your code. The examples use $e->getMessage(), which you should
replace with a custom message. The exception message as returned by
the getMessage method can be stored in a logfile, for example. Also,
by throwing a new exception we ensure that the stack trace will be
different and won’t contain login details present in the arguments of
the original exception stack trace.

This example creates a new PDO object called $pdo, passing
all the values retrieved from the login.php file to the
constructor. We achieve error checking by using the
try...catch pair of commands.

The PDO object is used in the following examples to access the
MySQL database.

Building and Executing a Query
Sending a query to MySQL from PHP is as simple as
including the relevant SQL in the query method of a

connection object. Example 10-3 shows you how to do this.

Example 10-3. Querying a database with PDO
<?php

 $query = "SELECT * FROM classics";

 $result = $pdo->query($query);

?>

As you can see, the MySQL query looks just like what you
would type directly at the command line, except there is no
trailing semicolon inside the string, as none is needed when
you are accessing MySQL from PHP. Here the variable
$query is assigned a string containing the query to be made
and then passed to the query method of the $pdo object,
which returns a result that we place in the object $result. All
the data returned by MySQL is now stored in an easily
interrogable format in the $result object.

Selecting all columns with SELECT * FROM ... instead of
listing only the columns you’ll need is used here for brevity,
but in general it should be avoided especially when querying
tables with many large columns, to avoid exhausting server
memory.

Fetching a Result
Once you have an object returned in $result, you can use it
to extract the data you want, one item at a time, using the
fetch method of the object. Example 10-4 combines and
extends the previous examples into a program that you can run
yourself to retrieve the results (as depicted in Figure 10-1).
Type this script and save it using the filename query.php, or
download it from the example repository.

Example 10-4. Fetching results one row at a time

<?php // query.php

 require_once 'login.php';

 try

 {

https://github.com/RobinNixon/lpmj7

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 $query = "SELECT * FROM classics";

 $result = $pdo->query($query);

 while ($row = $result->fetch())

 {

 echo 'Author: '.htmlspecialchars($row['author']) ."
";

 echo 'Title: '.htmlspecialchars($row['title']) ."
";

 echo 'Category: '.htmlspecialchars($row['category'])."
";

 echo 'Year: '.htmlspecialchars($row['year']) ."
";

 echo 'ISBN: '.htmlspecialchars($row['isbn']) ."

";

 }

?>

Figure 10-1. The output from query.php

Here, each time around the loop, we call the fetch method of
the $pdo object to retrieve the value stored in each row and
output the result using echo statements. Don’t worry if you see
the results in a different order. This is because we have not
used an ORDER BY command to specify the order in which they
should be returned, so the order will be unspecified.

When displaying data in a browser whose source was (or may
have been) user input, there’s always a risk of sneaky HTML
characters being embedded within it—even if you believe it to
have been previously sanitized—which could potentially be
used for a cross-site scripting (XSS) attack. The simple way to
prevent this possibility is to embed all such output within a
call to the function htmlspecialchars, which replaces all

such characters with harmless HTML entities in which, for
example, the < character is replaced with the entity <, and
so forth. This technique was implemented in the preceding
example and will be used in many of the following examples.

In Chapter 9, I talked about First, Second, and Third Normal
Form. You may have noticed that the classics table doesn’t
satisfy these, because both author and book details are
included within the same table. That’s because we created this
table before encountering normalization. However, for the
purposes of illustrating access to MySQL from PHP, reusing
this table prevents the hassle of typing in a new set of test data,
so we’ll stick with it for the time being.

Fetching a Row While Specifying the Style
The fetch method can return data in various styles, including
the following (where anonymous means unnamed):

PDO::FETCH_ASSOC

Returns the next row as an array indexed by column name

PDO::FETCH_BOTH (default)

Returns the next row as an array indexed by both column

name and number

PDO::FETCH_LAZY

Returns the next row as an anonymous object with names

as properties

PDO::FETCH_OBJ

Returns the next row as an anonymous object with column

names as properties

PDO::FETCH_NUM

Returns an array indexed by column number

For the full list of PDO fetch styles, please refer to the online
reference.

Therefore, the following (slightly changed) example (shown
in Example 10-5) shows more clearly the intention of the
fetch method in this case. You may wish to save this revised
file using the name fetchrow.php.

Example 10-5. Fetching results one row at a time

<?php //fetchrow.php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 $query = "SELECT * FROM classics";

 $result = $pdo->query($query);

 while ($row = $result->fetch(PDO::FETCH_ASSOC)) // Style of

fetch

 {

 echo 'Author: '.htmlspecialchars($row['author']) ."
";

 echo 'Title: '.htmlspecialchars($row['title']) ."
";

 echo 'Category: '.htmlspecialchars($row['category'])."
";

 echo 'Year: '.htmlspecialchars($row['year']) ."
";

 echo 'ISBN: '.htmlspecialchars($row['isbn']) ."

";

 }

?>

The fetch method in this example returns only an associative
array, leaving out the numeric indexes that would be returned
when the fetch style wouldn’t be specified, or if
PDO::FETCH_BOTH would be used. Associative arrays can be
more useful than numeric ones because you can refer to each

https://oreil.ly/lhZXN

column by name, such as $row['author'], instead of trying
to remember where it is located in the column order. The
numeric indexes are often unused so the fetch method does
not need to return them.

Closing a Connection
PHP will eventually return the memory it has allocated for
objects after you have finished with the script, so in small
scripts, you don’t usually need to worry about releasing
memory yourself. However, should you wish to close a PDO
connection manually, you simply set it to null like this:

$pdo = null;

A Practical Example
It’s time to write our first example of inserting data in and
deleting it from a MySQL table using PHP. I recommend that
you type Example 10-6 and save it to your web development
directory using the filename sqltest.php. You can see an
example of the program’s output in Figure 10-2.

NOTE
Example 10-6 creates a standard HTML form. Chapter 11 explains
forms in detail, but in this chapter I take form handling for granted and
just deal with database interactions.

Example 10-6. Inserting and deleting using sqltest.php

<?php // sqltest.php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 if (isset($_POST['delete']) && isset($_POST['isbn']))

 {

 $isbn = sanitize_post_value($pdo, 'isbn');

 $query = "DELETE FROM classics WHERE isbn=$isbn";

 $result = $pdo->query($query);

 }

 if (isset($_POST['author']) &&

 isset($_POST['title']) &&

 isset($_POST['category']) &&

 isset($_POST['year']) &&

 isset($_POST['isbn']))

 {

 $author = sanitize_post_value($pdo, 'author');

 $title = sanitize_post_value($pdo, 'title');

 $category = sanitize_post_value($pdo, 'category');

 $year = sanitize_post_value($pdo, 'year');

 $isbn = sanitize_post_value($pdo, 'isbn');

 $query = "INSERT INTO classics VALUES" .

 "($author, $title, $category, $year, $isbn)";

 $result = $pdo->query($query);

 }

 echo <<<_END

 <form action="sqltest.php" method="post"><pre>

 Author <input type="text" name="author">

 Title <input type="text" name="title">

 Category <input type="text" name="category">

 Year <input type="text" name="year">

 ISBN <input type="text" name="isbn">

 <input type="submit" value="ADD RECORD">

 </pre></form>

_END;

 $query = "SELECT * FROM classics";

 $result = $pdo->query($query);

 while ($row = $result->fetch())

 {

 $r0 = htmlspecialchars($row['author']);

 $r1 = htmlspecialchars($row['title']);

 $r2 = htmlspecialchars($row['category']);

 $r3 = htmlspecialchars($row['year']);

 $r4 = htmlspecialchars($row['isbn']);

 echo <<<_END

 <pre>

 Author $r0

 Title $r1

 Category $r2

 Year $r3

 ISBN $r4

 </pre>

 <form action='sqltest.php' method='post'>

 <input type='hidden' name='delete' value='yes'>

 <input type='hidden' name='isbn' value='$r4'>

 <input type='submit' value='DELETE RECORD'></form>

_END;

 }

 function sanitize_post_value($pdo, $var)

 {

 return $pdo->quote($_POST[$var]);

 }

?>

Figure 10-2. The output from Example 10-6, sqltest.php

At almost 80 lines of code, this program may appear daunting,
but don’t worry—you’ve already covered many of those lines
in Example 10-4, and what the code does is actually quite
simple.

It first checks for any inputs that may have been made and
then either inserts new data into the table classics of the
publications database or deletes a row from it, according to the
input supplied. Regardless of whether there was input, the
program then outputs all rows in the table to the browser. Let’s
see how it works.

The first section of new code starts by using the isset
function to check whether values for all the fields have been
posted to the program. Upon confirmation, each line within the
if statement calls the function sanitize_post_value, which
appears at the end of the program. This function has one small
but critical job: fetching input from the browser.

NOTE
For clarity and brevity, and to explain things as simply as possible,
many of the following examples omit sensible security precautions
that would have made them longer and could detract from clearly
explaining their function. Don’t skip past “Preventing Hacking
Attempts” on preventing your database from being hacked, where you
will learn about additional actions you can take to secure your code.

The $_POST Array
I mentioned in an earlier chapter that a browser sends user
input through either a GET request or a POST request. Form
data is almost always sent using the POST method as putting
all the form data in GET request URLs would be unsightly as
well as a potential security and privacy risk. Once a POST
method form has been submitted, the web server bundles up
all of the user input and puts it into an array named $_POST.

Whether a form has been set to use either the GET or POST
method, the $_GET associative array will always be populated
with URL query parameters, if present, from the form’s

action attribute. Additionally, the $_GET array will also
contain form field values if the GET method has been used. If
the form was submitted using the POST method, the form field
data will be returned in the $_POST array.

Each field has an element in the array named after that field.
So, if a form contains a field named isbn, the $_POST array
contains an element keyed by the word isbn. The PHP
program can read that field by referring to either
$_POST['isbn'] or $_POST["isbn"] (single and double
quotes have the same effect in this case).

If the $_POST syntax still seems complex to you, remember
you can just use the convention shown in Example 10-6: copy
the user’s input to other variables and forget about $_POST
after that. This is normal in PHP programs: they retrieve all
the fields from $_POST at the beginning of the program and
then ignore it.

NOTE
There is no reason to write to an element in the $_POST array. Its only
purpose is to communicate information from the browser to the
program, and you’re better off copying data to your own variables
before altering it.

The sanitize_post_value function from Example 10-
6 passes each item it retrieves through the quote method of
the PDO object to escape any quotes that a hacker may have
inserted to break into or alter your database, like this, and it
adds quotes around each string for you:

function sanitize_post_value($pdo, $var)

{

 return $pdo->quote($_POST[$var]);

}

Deleting a Record
Prior to checking whether new data has been posted, the
program checks whether the variable $_POST['delete'] has

a value. If so, the user has clicked the DELETE RECORD
button to erase a record. In this case, the value of $isbn will
also have been posted.

As you will recall, the ISBN uniquely identifies each record.
The script receives the identifier as the value of the hidden
HTML form field named isbn in $_POST['isbn']. The
sanitize_post_value function is then used to escape any
dangerous characters and add quotes. The returned value is
stored in $isbn, which is then used in the DELETE FROM query
created in the variable $query, which is then passed to the
query method of the pdo object to issue it to MySQL.

If $_POST['delete'] is not set (and there is no record to be
deleted), $_POST['author'] and other posted values are
checked. If they have all been given values, $query is set to an
INSERT INTO command, followed by the five values to be
inserted. The string is then passed to the query method.

HELPFUL ERROR MESSAGES
If any query fails, PHP will throw an error. On a production website,
you will not want these very programmer-oriented error messages to
show, so you will need to add more try...catch commands and
replace the existing catch statement, which handles connection errors
only, with one in which you handle the error yourself neatly and
decide what sort of error message (if any) to give to your users.

Displaying the Form
Before displaying the little form (as shown in Figure 10-2), the
program sanitizes copies of the elements we will be outputting
from the $row array into the variables $r0 through $r4 by
passing them to the htmlspecialchars function, to replace
any potentially dangerous HTML characters with harmless
HTML entities.

Then the part of code that displays the output follows, using a
heredoc echo <<<_END..._END structure as seen in previous
chapters, which outputs everything between the _END tags.

The HTML form section simply sets the form’s action to
sqltest.php. This means that when the form is submitted, the
contents of the form fields will be sent to the file sqltest.php,
which is the program itself. The form is also set up to send the
fields as a POST rather than a GET request. This is because
GET requests are appended to the URL being submitted and
can look messy in your browser. They also allow users to
easily modify submissions and try to hack your server
(although that also can be achieved with in-browser developer
tools). Additionally, avoiding GET requests prevents too much
information appearing in server logfiles. Therefore, whenever
possible, you should use POST submissions, which also have
the benefit of revealing less posted data.

Having output the form fields, the HTML displays a submit
button with the name ADD RECORD and closes the form.
Note the <pre> and </pre> tags here, which have been used
to force a monospaced font that lines up all the inputs neatly.
The carriage returns at the end of each line are also output
when inside <pre> tags.

NOTE
Instead of using the echo command, the program could drop out of
PHP using ?>, issue the HTML, and then reenter PHP processing with
<?php. Which style is used is a matter of programmer preference.

Querying the Database
Next, the code returns to the familiar territory of Example 10-
4, where a query is sent to MySQL asking to see all the
records in the classics table, like this:

$query = "SELECT * FROM classics";

$result = $pdo->query($query);

A while loop is then entered to display the contents of each
row. Then the program populates the array $row with a row of
results by calling the fetch method of $result.

With the data in $row, it’s now a simple matter to display it
within the heredoc echo statement that follows, in which I
have chosen to use a <pre> tag to line up the display of each
record in a pleasing manner. After the display of each record, a
second form also posts to sqltest.php (the program itself) but
this time contains two hidden fields: delete and isbn. The
delete field is set to yes and isbn to the value held in
$row[isbn], which contains the ISBN for the record.

Then a submit button with the name DELETE RECORD is
displayed, and the form is closed. A curly brace then
completes the while loop, which will continue until all
records have been displayed.

Finally, you see the definition for the function
sanitize_post_value, which we’ve already looked at. And
that’s it—our first PHP program to manipulate a MySQL
database. So, let’s check out what it can do.

Once you’ve typed the program (and corrected any errors),
enter this data into the various input fields to add a new record
for the book Moby Dick to the database:

Herman Melville

Moby Dick

Fiction

1851

9780199535729

Running the Program
When you have submitted this data using the ADD RECORD
button, scroll down the web page to see the new addition. It
should look something like Figure 10-3, although since we
have not ordered the results using ORDER BY, the position in
which it appears is undetermined.

Figure 10-3. The result of adding Moby Dick to the database

Now let’s look at how deleting a record works by creating a
dummy record. Try entering just the number 1 in each of the
five fields and clicking the ADD RECORD button. If you
scroll down, you’ll see a new record consisting just of 1s.
Obviously, this record isn’t useful in this table, so now click
the DELETE RECORD button and scroll down again to
confirm that the record has been deleted.

NOTE
Assuming that everything worked, you now can add and delete records
at will. Try doing this a few times, but leave the main records in place
(including the new one for Moby Dick), as we’ll be using them later.
You also can try adding the record with all 1s again a couple of times
and if you haven’t already deleted it, note the error message that you
receive the second time, indicating that there is already an ISBN with
the number 1.

Practical MySQL
You are now ready for some practical techniques you can use
in PHP to access the MySQL database, including tasks such as
creating and dropping tables; inserting, updating, and deleting
data; and protecting your database and website from malicious
users. The following examples assume that you’ve already
created the login.php program discussed earlier in this chapter.

Creating a Table
Let’s assume that you are working for a wildlife park and need
to create a database to hold details about all the types of cats it
houses. You know there are nine families of cats—Lion, Tiger,
Jaguar, Leopard, Cougar, Cheetah, Lynx, Caracal, and
Domestic—so you’ll need a column for that. Then each cat has
been given a name, so that’s another column, and you also
want to keep track of their ages, which is another. Of course,
you will probably need more columns later, perhaps to hold
dietary requirements, inoculations, and other details, but for
now that’s enough to get going. A unique identifier is also
needed for each animal, so you also decide to create a column
for that called id.

Example 10-7 shows the code you might use to create a
MySQL table to hold this data, with the main query
assignment in bold text.

Example 10-7. Creating a table called cats

<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 $query = "CREATE TABLE cats (

 id SMALLINT NOT NULL AUTO_INCREMENT,

 family VARCHAR(32) NOT NULL,

 name VARCHAR(32) NOT NULL,

 age TINYINT NOT NULL,

 PRIMARY KEY (id)

)";

 $result = $pdo->query($query);

?>

As you can see, the MySQL query looks just like what you
would type directly at the command line, except without the
trailing semicolon.

Describing a Table
When you aren’t logged in to the MySQL command line,
here’s a handy piece of code that you can use to verify that a
table has been correctly created from inside a browser. It
simply issues the query DESCRIBE cats and then outputs an
HTML table with four headings—Column, Type, Null, and
Key—underneath which all columns within the table are
shown. To use it with other tables, simply replace the name
cats in the query with that of the new table (see Example 10-
8).

Example 10-8. Describing the cats table
<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e->getCode());

 }

 $query = "DESCRIBE cats";

 $result = $pdo->query($query);

 echo "<table><tr><th>Column</th><th>Type</th>";

 echo "<th>Null</th><th>Key</th></tr>";

 while ($row = $result->fetch(PDO::FETCH_NUM))

 {

 echo "<tr>";

 for ($k = 0 ; $k < 4 ; ++$k)

 echo "<td>" . htmlspecialchars($row[$k]) . "</td>";

 echo "</tr>";

 }

 echo "</table>";

?>

See how the PDO fetch style of FETCH_NUM is used to return a
numeric array so that it is easy to display the contents of the
returned data without using names. The output from the
program should look like this:

Column Type Null Key

id smallint(6) NO PRI

family varchar(32) NO

name varchar(32) NO

age tinyint(4) NO

Dropping a Table
Dropping a table is very easy to do and therefore very
dangerous, so be careful. It is not something you would
usually do in a PHP project, but Example 10-9 shows the code
that you’d use if needed. However, I don’t recommend that
you try it until you have been through the other examples (up
to “Performing Additional Queries”), as it will drop the table
cats and you’ll have to re-create it using Example 10-7.

Example 10-9. Dropping the cats table

<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 $query = "DROP TABLE cats";

 $result = $pdo->query($query);

?>

Adding Data
Let’s add some data to the table, using the code in
Example 10-10.

Example 10-10. Adding data to the cats table

<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 $query = "INSERT INTO cats VALUES(NULL, 'Lion', 'Leo', 4)";

 $result = $pdo->query($query);

?>

You may wish to add a couple more items of data by
modifying $query as follows and calling up the program in
your browser again:

$query = "INSERT INTO cats VALUES(NULL, 'Cougar', 'Growler',

2)";

$query = "INSERT INTO cats VALUES(NULL, 'Cheetah', 'Charly',

3)";

By the way, did you notice the NULL value passed as the first
parameter? This is because the id column is of type
AUTO_INCREMENT, and MySQL will decide what value to
assign according to the next available number in sequence. So,
we simply pass a NULL value, which will be ignored.

Of course, the most efficient way to populate MySQL with
data is to create an array and insert the data with a single query
using multiple lists of column values specified within
parentheses and separated by commas:

INSERT INTO cats VALUES

 (NULL, 'Cougar', 'Growler', 2), (NULL, 'Cheetah', 'Charly', 3)

NOTE
At this point, I am concentrating on showing you how to directly insert
data into MySQL (and providing some security precautions to keep the
process safe). However, later in the book we’ll move on to a better
method you can employ that involves placeholders (see “Using
Placeholders”), which make it virtually impossible for users to inject
malicious hacks into your database. So, as you read this section,
understand that these are the basics of how MySQL insertion works
and remember that we will improve on it later.

Retrieving Data
Now that some data has been entered into the cats table,
Example 10-11 shows how you can check that it was correctly
inserted.

Example 10-11. Retrieving rows from the cats table
<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e->getCode());

 }

 $query = "SELECT * FROM cats";

 $result = $pdo->query($query);

 echo "<table><tr> <th>Id</th> <th>Family</th>";

 echo "<th>Name</th><th>Age</th></tr>";

 while ($row = $result->fetch(PDO::FETCH_NUM))

 {

 echo "<tr>";

 for ($k = 0 ; $k < 4 ; ++$k)

 echo "<td>" . htmlspecialchars($row[$k]) . "</td>";

 echo "</tr>";

 }

 echo "</table>";

?>

This code simply issues the MySQL query SELECT * FROM
cats and then displays all the rows returned by requiring them
in the form of numerically accessed arrays with the style
of PDO::FETCH_NUM. Its output is:

Id Family Name Age

1 Lion Leo 4

2 Cougar Growler 2

3 Cheetah Charly 3

Here you can see that the id column has correctly auto-
incremented.

Updating Data
Changing data that you have already inserted is also quite
simple. Did you notice the spelling of Charly for the cheetah’s
name? Let’s correct that to Charlie, as in Example 10-12.

Example 10-12. Changing the name Charly the cheetah to
Charlie

<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 $query = "UPDATE cats SET name='Charlie' WHERE

name='Charly'";

 $result = $pdo->query($query);

?>

If you run Example 10-11 again, you’ll see that it now outputs:

Id Family Name Age

1 Lion Leo 4

2 Cougar Growler 2

3 Cheetah Charlie 3

Deleting Data
Growler the cougar has been transferred to another zoo, so it’s
time to remove him from the database; see Example 10-13.

Example 10-13. Removing Growler the cougar from the cats
table

<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 $query = "DELETE FROM cats WHERE name='Growler'";

 $result = $pdo->query($query);

?>

This uses a standard DELETE FROM query, and when you run
Example 10-11, you can see that the row has been removed:

Id Family Name Age

1 Lion Leo 4

3 Cheetah Charlie 3

Using AUTO_INCREMENT

When using AUTO_INCREMENT, you cannot know what value
has been given to a column before a row is inserted. Instead, if
you need to know it, you must ask MySQL afterward by
calling $pdo->lastInsertId(). This need is common: for
instance, when you process a purchase, you might insert a new
customer into a Customers table and then refer to the newly
created CustId when inserting a purchase into the Purchases
table.

NOTE
Using AUTO_INCREMENT is recommended instead of selecting the
highest ID in the id column and incrementing it by one, because
concurrent queries could change the values in that column after the
highest value has been fetched and before the calculated value is
stored.

Example 10-10 can be rewritten as Example 10-14 to display
this value after each insert.

Example 10-14. Adding data to the cats table and reporting
the insert ID

<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 $query = "INSERT INTO cats VALUES(NULL, 'Lynx', 'Stumpy',

5)";

 $result = $pdo->query($query);

 echo "The Insert ID was: " . $pdo->lastInsertId();

?>

The contents of the table should now look like the following
(note how the previous id value of 2 is not reused, as this

could cause complications in some instances):

Id Family Name Age

1 Lion Leo 4

3 Cheetah Charlie 3

4 Lynx Stumpy 5

Using insert IDs
It’s very common to insert data in multiple tables: a book
followed by its author, a customer followed by their purchase,
and so on. When doing this with an auto-increment column,
you will need to retain the insert ID returned for storing in the
related table.

For example, let’s assume that these cats can be “adopted” by
the public as a means of raising funds, and that when a new cat
is stored in the cats table, we also want to create a key to tie it
to the animal’s adoptive owner. The code to do this is similar
to that in Example 10-14, except that the returned insert ID is
stored in the variable $insertID and is then used as part of
the subsequent query:

$query = "INSERT INTO cats VALUES(NULL, 'Lynx', 'Stumpy',

5)";

$result = $pdo->query($query);

$insertID = $pdo->lastInsertId();

$query = "INSERT INTO owners VALUES($insertID, 'Ann',

'Smith')";

$result = $pdo->query($query);

Now the cat is connected to its “owner” through the cat’s
unique ID, which was created automatically by
AUTO_INCREMENT. This example, and especially the last two
lines, is theoretical code showing how to use an insert ID as a
key if we had created a table called owners.

Performing Additional Queries

Okay, that’s enough feline fun. To explore some slightly more
complex queries, we need to revert to using the customers and
classics tables that you created in Chapter 8. There will be
three customers in the customers table, while the classics table
holds the details of a few books. They also share a common
column of ISBNs, called isbn, that you can use to perform
additional queries.

For example, to display all of the customers along with the
titles and authors of the books they have bought, you can use
the code in Example 10-15.

Example 10-15. Performing a secondary query

<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 $query = "SELECT * FROM customers";

 $result = $pdo->query($query);

 while ($row = $result->fetch())

 {

 $custname = htmlspecialchars($row['name']);

 $custisbn = htmlspecialchars($row['isbn']);

 echo "$custname purchased ISBN $custisbn:
";

 $subquery = "SELECT * FROM classics WHERE

isbn='$custisbn'";

 $subresult = $pdo->query($subquery);

 $subrow = $subresult->fetch();

 $custbook = htmlspecialchars($subrow['title']);

 $custauth = htmlspecialchars($subrow['author']);

 echo " '$custbook' by $custauth

";

 }

?>

This program uses an initial query to the customers table to
look up all the customers and then, given the ISBNs of the
books each customer purchased, makes a new query to the
classics table to find out the title and author for each. The
output from this code should be similar to:

Joe Bloggs purchased ISBN 9780099533474:

 'The Old Curiosity Shop' by Charles Dickens

Jack Wilson purchased ISBN 9780517123201:

 'The Origin of Species' by Charles Darwin

Mary Smith purchased ISBN 9780582506206:

 'Pride and Prejudice' by Jane Austen

NOTE
Of course, although it wouldn’t illustrate performing additional
queries, in this particular case you could also return the same
information using a NATURAL JOIN query (see Chapter 8), like this:

SELECT name,isbn,title,author FROM customers

 NATURAL JOIN classics;

Preventing Hacking Attempts
You might at first find it difficult to understand just how
dangerous it is to pass user input unchecked to MySQL. For
example, suppose you have a simple piece of code to verify a
user, and it looks like this:

$user = $_POST['user'];

$pass = $_POST['pass'];

$query = "SELECT * FROM users WHERE user='$user' AND

pass='$pass'";

At first glance, you might think this code is perfectly fine. If
the user enters values of fredsmith and mypass for $user and

$pass, respectively, then the query string, as passed to
MySQL, will be:

SELECT * FROM users WHERE user='fredsmith' AND pass='mypass'

This is all well and good, but what if someone enters the
following for $user (and doesn’t even enter anything for
$pass)?

admin' #

Here’s the string that would be sent to MySQL:

SELECT * FROM users WHERE user='admin' #' AND pass=''

Do you see the problem? An SQL injection attack has
occurred. In MySQL, the # symbol represents the start of a
comment. Therefore, the user will be logged in as admin
(assuming there is a user admin), without having to enter a
password. In the following, the part of the query that will be
executed is shown in bold; the rest will be ignored:

SELECT * FROM users WHERE user='admin' #' AND pass=''

Count yourself very lucky if that’s all a malicious user does to
you. You might still be able to go into your application and
undo any changes the user makes as admin. But what if your
application code removes a user from the database? The code
might look something like this:

$user = $_POST['user'];

$pass = $_POST['pass'];

$query = "DELETE FROM users WHERE user='$user' AND

pass='$pass'";

Again, this looks quite normal at first glance, but what if
someone entered the following for $user?

anything' OR 1=1 #

This would be interpreted by MySQL as:

DELETE FROM users WHERE user='anything' OR 1=1 #' AND pass=''

Ouch—because any statement followed by OR 1=1 is always
TRUE, that SQL query will always be TRUE, and therefore,
since the rest of the statement is ignored due to the # character,
you’ve now lost your whole users database! So what can you
do about this kind of attack?

Steps You Can Take
First, don’t rely on PHP’s built-in magic quotes, used to
automatically escape any characters such as single and double
quotes by prefacing them with a backslash (\). The feature
was removed in PHP 5.4.0.

Instead, as we showed earlier, you could use the quote method
of the PDO object to escape all characters and surround strings
with quotation marks. Example 10-16 is a function you can
use that will properly sanitize a user-inputted string for you.

Example 10-16. How to properly sanitize user input for
MySQL

<?php

 function mysql_fix_string($pdo, $string)

 {

 return $pdo->quote($string);

 }

?>

Example 10-17 illustrates how you would incorporate
mysql_fix_string within your own code.

You could also call $pdo->quote($string) directly instead
of wrapping it in a function like mysql_fix_string.

Example 10-17. How to safely access MySQL with user input

<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 $user = mysql_fix_string($pdo, $_POST['user']);

 $pass = mysql_fix_string($pdo, $_POST['pass']);

 $query = "SELECT * FROM users WHERE user=$user AND

pass=$pass";

 // Etc...

 function mysql_fix_string($pdo, $string)

 {

 return $pdo->quote($string);

 }

?>

NOTE
Remember: because the quote method automatically adds quotes
around strings, you should not use them in any query that uses these
sanitized strings. So, in place of using this:

 $query = "SELECT * FROM users WHERE user='$user' AND

pass='$pass'";

you should enter:

 $query = "SELECT * FROM users WHERE user=$user AND

pass=$pass";

These precautions are becoming less important, however, because
there’s a much easier and safer way to access MySQL, which obviates
the need for these types of functions—the use of placeholders, which
is explained next.

Using Placeholders

All the methods shown thus far work with MySQL but have
security implications, with strings constantly requiring
escaping to prevent security risks. So, now that you know the
basics, let me introduce the best and recommended way to
interact with MySQL that is pretty much bulletproof in terms
of security. Once you have read this section, you should no
longer use direct inserting of data into MySQL but instead
always use placeholders. It was still important to show you
how to do it without placeholders because a lot of existing or
older code doesn’t use them.

So what are placeholders? They are positions within prepared
statements in which data is transferred directly to the database,
without the possibility of user-submitted (or other) data being
interpreted as MySQL statements (and the potential for
hacking that could result).

The technology requires that you first prepare the statement
you wish to be executed in MySQL but leave all the parts of
the statement that refer to data as simple question marks.

In plain MySQL, prepared statements look like Example 10-
18.

Example 10-18. MySQL placeholders

PREPARE statement FROM "INSERT INTO classics VALUES(?,?,?,?,?)";

SET @author = "Emily Brontë",

 @title = "Wuthering Heights",

 @category = "Classic Fiction",

 @year = "1847",

 @isbn = "9780553212587";

EXECUTE statement USING @author,@title,@category,@year,@isbn;

DEALLOCATE PREPARE statement;

This can be cumbersome to submit to MySQL, so the PDO
extension makes handling placeholders easier with a ready-
made method called prepare, which you call like this:

$stmt = $pdo->prepare('INSERT INTO classics VALUES(?,?,?,?,?)');

The object $stmt (shorthand for statement) returned by this
method is then used for sending the data to the server in place
of the question marks. Its first use is to bind some PHP
variables to each of the question marks (the placeholder
parameters) in turn, like this:

$stmt->bindParam(1, $author, PDO::PARAM_STR, 128);

$stmt->bindParam(2, $title, PDO::PARAM_STR, 128);

$stmt->bindParam(3, $category, PDO::PARAM_STR, 16);

$stmt->bindParam(4, $year, PDO::PARAM_INT);

$stmt->bindParam(5, $isbn, PDO::PARAM_STR, 13);

The first argument to bindParam is a number representing the
position in the query string of the value to insert (in other
words, which question mark placeholder is being referred to).
This is followed by the variable that will supply the data for
that placeholder, and then the type of data the variable must be
and, if a string, another value follows stating its maximum
length.

With the variables bound to the prepared statement, it is now
necessary to populate them with the data to be passed to
MySQL, like this:

$author = 'Emily Brontë';

$title = 'Wuthering Heights';

$category = 'Classic Fiction';

$year = '1847';

$isbn = '9780553212587';

At this point, PHP has everything it needs to execute the
prepared statement, so you can issue the following command,
which calls the execute method of the $stmt object created
earlier:

$stmt->execute();

Before going any further, it makes sense to verify whether the
command was executed successfully. You can do that by
calling the rowCount method of $stmt:

printf("%d Row inserted.\n", $stmt->rowCount());

In this case, the output should indicate that one row was
inserted.

When using the bindParam method, you need to correctly
specify the position, the type, and need to use a variable.
Luckily, there’s an easier and clearer way to use placeholders.
Instead of specifying positions and using question marks, you
can use named values (for example :name), and instead of
binding variables with bindParam, you can pass values
directly to the execute method:

$stmt = $pdo->prepare('INSERT INTO classics

 VALUES(:author,:title,:category,:year,:isbn)');

$stmt->execute([

 'author' => 'Emily Brontë',

 'title' => 'Wuthering Heights',

 'category' => 'Classic Fiction',

 'year' => 1847,

 'isbn' => '9780553212587'

]);

Note how the keys in the array passed to execute have the
same names as the named parameters in the query passed to
the prepare method. The order of the array items is irrelevant;
the key is what binds the value to the named parameter.

The colon prefix (:) is optional in the execute call (the array
keys can be named either author or :author) but required in
the prepare call. PHP will guess the data types from the array
values, which can be type-casted if needed; you don’t need to
specify them.

When you put all this together, the result is Example 10-19.

Example 10-19. Issuing prepared statements

<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 $stmt = $pdo->prepare('INSERT INTO classics

 VALUES(:author,:title,:category,:year,:isbn)');

 $stmt->execute([

 'author' => 'Emily Brontë',

 'title' => 'Wuthering Heights',

 'category' => 'Classic Fiction',

 'year' => 1847,

 'isbn' => '9780553212587'

]);

 printf("%d Row inserted.\n", $stmt->rowCount());

?>

Every time you use prepared statements in place of
nonprepared ones, you will be closing a potential security
hole, so it’s worth spending some time getting to know how to
use them.

Preventing JavaScript Injection into HTML
There’s another type of injection you need to be concerned
about—not for the safety of your own websites but for your
users’ privacy and protection. That’s cross-site scripting, also
referred to as an XSS attack.

This occurs when you allow HTML or, more often, JavaScript
code to be input by a user and then displayed by your website.
One place this is common is in a comment form. What
happens most often is that a malicious user will try to write
code that steals cookies from your site’s users, which even
allows them to discover username and password pairs if those
are poorly handled or other information that could enable
session hijacking (in which a user’s login is taken over by a
hacker, who could then take over that person’s account!). Or
the malicious user might launch a phishing attack to steal login
credentials from a fake login form.

Preventing this is as simple as calling the htmlentities
function, which strips out all HTML markup and replaces it
with a form that displays the characters but does not allow a
browser to act on them. For example, consider this HTML:

<script src='http://example.com/hack.js'></script>

<script>hack();</script>

This code loads in a JavaScript program and then executes
malicious functions. But if it is first passed through
htmlentities, it will be turned into the following totally
harmless string:

<script src='http://example.com/hack.js'>

</script>

<script>hack();</script>

Therefore, if you are ever going to display anything that your
users enter, either immediately or after storing it in a database,
you first need to sanitize it using the htmlentities function.
To do this, I recommend that you create a new function, like
the first one in Example 10-20, but you can also use
htmlentities directly.

Example 10-20. Functions for preventing both SQL and XSS
injection attacks

<?php

 function entities_fix_string($string)

 {

 return htmlentities($string);

 }

 function mysql_fix_string($pdo, $string)

 {

 return $pdo->quote($string);

 }

?>

The entities_fix_string function passes the string through
htmlentities before returning the fully sanitized string. To

use the mysql_fix_string function, you must already have
an active connection object open to a MySQL database.

Example 10-21 shows the new “higher protection” version of
Example 10-17. This is just example code, and you need to
add the code to access the results returned where you see the
//Etc... comment line.

Example 10-21. How to safely access MySQL and prevent XSS
attacks

<?php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (PDOException $e)

 {

 throw new PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 $user = mysql_fix_string($pdo, $_POST['user']);

 $pass = mysql_fix_string($pdo, $_POST['pass']);

 $query = "SELECT * FROM users WHERE user='$user' AND

pass='$pass'";

 echo 'Search result: ' . entities_fix_string($_GET['search']);

 //Etc…

 function entities_fix_string($string)

 {

 return htmlentities($string);

 }

 function mysql_fix_string($pdo, $string)

 {

 return $pdo->quote($string);

 }

?>

In Chapter 11, we’ll expand on ways to access MySQL from
PHP by looking at form handling. Before moving on, you can

test your knowledge of what you’ve learned in this chapter
with the following questions.

Questions
1. How do you connect to a MySQL database using

PDO?

2. How do you submit a query to MySQL using PDO?

3. What style of the fetch method can be used to return
a row as an array indexed by column number?

4. How can you manually close a PDO connection?

5. When adding a row to a table with an
AUTO_INCREMENT column, what value should be
passed to that column?

6. Which PDO method can be used to properly escape
user input to prevent code injection?

7. What is the best way to ensure database security when
accessing it?

See “Chapter 10 Answers” in the Appendix A for the answers
to these questions.

Chapter 11. Form
Handling

One of the main ways that website users interact with PHP and
MySQL is through HTML forms. These were introduced very
early on in the development of the World Wide Web, in 1993
—even before the advent of ecommerce—and have remained
a mainstay ever since, due to their simplicity and ease of use,
although formatting them can be a nightmare.

Of course, enhancements have been made over the years to
add extra functionality to HTML form handling, so this
chapter will bring you up to speed on the state of the art and
show you the best ways to implement forms for good usability
and security. Plus, the latest HTML specification has further
improved the use of forms.

Building Forms
Handling forms is a multipart process. First is the creation of a
form into which a user can enter the required details. This data
is then sent to the web server, where it is interpreted, often
with some error checking. If the PHP code identifies one or
more fields that require reentering, the form may be
redisplayed with an error message. When the code is satisfied
with the validity of the input, it takes some action that may
often involve a database, such as entering details about a
purchase.

A useful form consists of the following elements:

An opening <form> and closing </form> tag

A submission type specifying either a GET or POST
method using the method attribute; defaults to GET if

omitted

One or more input fields

The destination URL in the action attribute, to which
the form data is to be submitted; defaults to the same
page if not specified

Example 11-1 shows a very simple form created with HTML,
which you should type and save as formtest.php, or download
it from the examples repo.

Example 11-1. formtest.php—a simple HTML form

<html>

 <head>

 <title>Form Test</title>

 </head>

 <body>

 <form method="post" action="formtest.php">

 What is your name?

 <input type="text" name="name">

 <input type="submit">

 </form>

 </body>

</html>

Inside this multiline output is standard code for commencing
an HTML document, displaying its title, and starting the body
of the document. This is followed by the form, which is set to
send its data using the POST method to the PHP program
formtest.php, which is the name of the program itself.

The rest of the file closes all the items it opened: the form and
the body of the HTML document. The result of opening this
program in a web browser is shown in Figure 11-1.

https://github.com/RobinNixon/lpmj7

Figure 11-1. The result of opening formtest.php in a web browser

Retrieving Submitted Data
Example 11-1 is one part of the multi-step form-handling
process. If you enter a name and click the submit button, it
will appear that nothing will happen other than the form being
redisplayed (and the entered data lost). So now it’s time to add
some PHP code to process the data submitted by the form.

Example 11-2 expands on the previous program to include
data processing. Type it or modify formtest.php by adding in
the new lines, save it as formtest2.php, and try the program for
yourself. The result of entering a name and clicking Submit is
shown in Figure 11-2.

Example 11-2. Updated version of formtest.php

<?php // formtest2.php

 if (!empty(($_POST['name']))) $name =

htmlentities($_POST['name']);

 else $name = "(Not Entered)";

 echo <<<_END

 <html>

 <head>

 <title>Form Test</title>

 </head>

 <body>

 Your name is: $name

 <form method="post" action="formtest2.php">

 What is your name?

 <input type="text" name="name">

 <input type="submit">

 </form>

 </body>

 </html>

_END;

?>

Figure 11-2. formtest2.php with data handling

The first thing to notice about this example is that, as you have
seen in earlier chapters, rather than dropping in and out of
PHP code, the echo <<<_END..._END heredoc construct is
used whenever multiline HTML must be output.

The only other changes are a couple of lines at the start that
check the name field of the $_POST associative array and echo
it back to the user. Chapter 10 introduced the $_POST
associative array, which contains an element for each field in
an HTML form. In Example 11-2, the input name used was
name and the form method was POST, so the element name of
the $_POST array contains the value in $_POST['name'].

The PHP isset function is used to test whether
$_POST['name'] has been assigned a value. If nothing was
posted, the program assigns the value (Not entered);
otherwise, it stores the value that was entered. Then a single
line has been added after the <body> statement to display that
value, which is stored in $name.

Default Values
Sometimes it’s convenient to offer your site visitors a default
value in a web form. For example, suppose you put up a loan
repayment calculator widget on a real estate website. It could

make sense to enter default values of, say, 15 years and 3%
interest so that the user can simply type either the principal
sum to borrow or the amount that they can afford to pay each
month.

In this case, the HTML for those two values would be
something like Example 11-3.

Example 11-3. Setting default values

<form method="post" action="calc.php"><pre>

 Loan Amount <input type="text" name="principal">

Monthly Repayment <input type="text" name="monthly">

 Number of Years <input type="text" name="years" value="25">

 Interest Rate <input type="text" name="interest" value="6">

 <input type="submit">

</pre></form>

Take a look at the third and fourth inputs. By populating the
value attribute, you display a default value in the field, which
the users can then change if they wish. With sensible default
values, you can make your web forms more user-friendly by
minimizing unnecessary typing. The result of the previous
code looks like Figure 11-3. Of course, this was created to
illustrate default values, and, because the program calc.php
has not been written, the form will return a 404 error message
if you submit it.

Figure 11-3. Using default values for selected form fields

Input Types

HTML forms are very versatile and allow you to submit a
wide range of input types, from text boxes and text areas to
checkboxes, radio buttons, and more.

Text boxes
The input type used most often is the text box. It accepts a
wide range of alphanumeric text and other characters in a
single-line box. The general format of a text box input is:

<input type="text" name="name" size="size" maxlength="length"

value="value">

We’ve already covered the name and value attributes, but two
more are introduced here: size and maxlength. The size
attribute specifies the width of the box (in characters of the
current font) as it should appear on the screen, and maxlength
specifies the maximum number of characters that a user is
allowed to enter into the field.

The type attribute, which tells the web browser what type of
input to expect, can be omitted since text is the default, but
it’s recommended to add it even if not required. The name
attribute gives the input a name that will be used to process the
field upon receipt of the submitted form.

Text areas
When you need to accept input of more than a short line of
text, use a text area. This is similar to a text box but, because it
allows multiple lines, it has some different attributes. Its
general format looks like this:

<textarea name="name" cols="width" rows="height" wrap="type">

</textarea>

The first thing to notice is that <textarea> has its own tag
and is not a subtype of the <input> tag. It therefore requires a
closing </textarea> to end input.

Instead of a default attribute, if you have default text to
display, you must put it before the closing </textarea>, and
it will then be displayed and be editable by the user:

<textarea name="name" cols="width" rows="height" wrap="type">

 This is some default text.

</textarea>

To control the width and height, use the cols and rows
attributes (or CSS). Both use the character spacing of the
current font to determine the size of the area. If you omit these
values, a default input box will be created that will vary in
dimensions depending on the browser used, so you should
always define them to be certain about how your form will
appear.

Last, you can control how the text entered into the box will
wrap (and how any such wrapping will be sent to the server)
using the wrap attribute. Table 11-1 shows the wrap types
available. If you leave out the wrap attribute, soft wrapping is
used.

Table 11-1. The wrap types available in a <textarea> input

Type Action

off Text does not wrap, and lines appear
exactly as the user types them.

soft Text wraps but is sent to the server as one
long string without carriage returns and
line feeds.

hard Text wraps and is sent to the server in
wrapped format with soft or hard returns
and line feeds.

Checkboxes

When you want to offer a number of different options to a
user, from which they can select one or more items,
checkboxes are the way to go. Here is the format to use:

<input type="checkbox" name="name" value="value" checked>

By default, checkboxes are square. If you include the checked
attribute, the box is already checked when the page is loaded.
The string you assign to the attribute should either be
surrounded with double or single quotes or the value
"checked", or no value should be assigned (just checked). If
you don’t include the attribute, the box is shown unchecked.
Here is an example of creating an unchecked box; we’ll talk
about the <label> tag in a moment:

<label for="agree">I Agree</label>

<input type="checkbox" id="agree" name="agree">

If the user doesn’t check the box, no value will be submitted.
But if they do, a value of "on" will be submitted for the field
named agree. If you prefer to have your own value submitted
instead of the word on (such as the number 1), you could use
the following syntax:

<label for="agree">I Agree</label>

<input type="checkbox" id="agree" name="agree" value="1">

On the other hand, if you’d like to offer your users a default
option to deliver a package to their billing address, for
example, you might want to have the checkbox already
checked as the default value:

<label for="same">Deliver to the same address?</label>

<input type="checkbox" id="same" name="sameaddress" checked>

If you want to allow groups of items to be selected at one time,
assign them all the same name. However, only the last item
checked will be submitted, unless you pass an array as the

name. For example, Example 11-4 allows the user to select
their favorite ice creams (see Figure 11-4 for how it displays in
a browser, also note that I have left out the label tags for
brevity).

Example 11-4. Offering multiple checkbox choices

 Vanilla <input type="checkbox" name="ice" value="Vanilla">

 Chocolate <input type="checkbox" name="ice" value="Chocolate">

Strawberry <input type="checkbox" name="ice" value="Strawberry">

Figure 11-4. Using checkboxes to make quick selections

If only one of the checkboxes is selected, such as the second
one, only that item will be submitted (the field named ice
would be assigned the value "Chocolate"). But if two or
more are selected, only the last value will be submitted, with
prior values being ignored.

If you want exclusive behavior—so that only one item can be
submitted—then you should use radio buttons instead (see
“Radio buttons”). Otherwise, to allow multiple submissions,
you have to slightly alter the HTML, as in Example 11-5 (note
the addition of the square brackets, [], following the values of
ice, and again label tags left out for brevity).

Example 11-5. Submitting multiple values with an array

 Vanilla <input type="checkbox" name="ice[]" value="Vanilla">

 Chocolate <input type="checkbox" name="ice[]"

value="Chocolate">

Strawberry <input type="checkbox" name="ice[]"

value="Strawberry">

Now when the form is submitted, if any of these items have
been checked, an array called ice will be submitted that
contains all the selected values. You can extract either the
single submitted value or the array of values to a variable like
this:

$ice = $_POST['ice'];

If the field ice has been posted as a single value, $ice will be
a single string, such as "Strawberry". But if ice was defined
in the form as an array (like in Example 11-5), $ice will be an
array, and its number of elements will be the number of values
submitted. Table 11-2 shows the seven possible sets of values
that could be submitted by this HTML for one, two, or all
three selections. In each case, an array of one, two, or three
items is created.

Table 11-2. The seven possible sets of values for the array $ice

One value
submitted

Two values
submitted

Three values
submitted

$ice[0] => Vanilla

$ice[0] => Chocola

te

$ice[0] => Strawbe

rry

$ice[0] => Vanilla

$ice[1] => Chocolat

e

$ice[0] => Vanilla

$ice[1] => Strawber

ry

$ice[0] => Chocolat

e

$ice[1] => Strawber

ry

$ice[0] => Vanilla

$ice[1] => Chocolate

$ice[2] => Strawberry

If $ice is an array, the PHP code to display its contents is
quite simple and might look like this:

foreach($ice as $item) echo "$item
";

This uses the standard PHP foreach construct to iterate
through the array $ice and pass each element’s value into the
variable $item, which is then displayed via the echo
command. The
 is just an HTML formatting device to
force a new line after each flavor in the display.

Labels
You can provide an even better user experience by utilizing the
<label> tag. Going back to the delivery address example, it
uses a label tag, which is explicitly associated with an input
(a checkbox in this case) by using the for and id attributes.
This allows the user to click the checkbox itself and the
associated text:

<label for="same">Deliver to the same address?</label>

<input type="checkbox" id="same" name="sameaddress" checked>

A label tag can also surround a form element (no need for the
for and id attributes), making it selectable by clicking any
visible part contained between the opening and closing
<label> tags:

<label>

 Deliver to the same address?

 <input type="checkbox" name="sameaddress" checked>

</label>

The text will not be underlined like a hyperlink when you add
a label, but as the mouse pointer passes over it, it will change
to an arrow instead of a text cursor, indicating that the whole
item is clickable.

Labels can be added to all form fields, not just checkboxes,
and we’ll be using them extensively in the following
examples.

Radio buttons

Radio buttons are named after the push-in preset buttons found
on many older radios, where any previously depressed button
pops back up when another is pressed. They are used when
you want only a single value to be returned from a selection of
two or more options. All the buttons in a group must use the
same name, and, because only a single value is returned, you
do not have to pass an array.

For example, if your website offers a choice of delivery times
for items purchased from your store, you might use HTML
like that in Example 11-6 (see Figure 11-5 to see how it
displays). By default, radio buttons are round.

Example 11-6. Using radio buttons

<label for="morning">8am-Noon</label>

 <input type="radio" id="morning" name="time" value="1">

<label for="afternoon">Noon-4pm</label>

 <input type="radio" id="afternoon" name="time" value="2"

checked>

<label for="evening">4pm-8pm</label>

 <input type="radio" id="evening" name="time" value="3">

Figure 11-5. Selecting a single value with radio buttons

Here, the second option of Noon–4pm has been selected by
default. This default choice ensures that at least one delivery
time will be chosen by the user, which they can change to one
of the other two options if they prefer. Had one of the items
not been already checked, the user might forget to select an
option, and no value would be submitted for the delivery time.

Unlike checkboxes, once selected, radio buttons cannot be
deselected, so if you would like to provide an option like “no
preference” you should make it an explicit radio button.

Hidden fields
Sometimes it is convenient to have hidden form fields so that
you can keep track of the state of form entry. For example, you
might wish to know whether a form has already been
submitted. You can achieve this by adding some HTML in
your PHP code, such as:

<input type="hidden" name="submitted" value="yes">

Let’s assume the form was created outside the program,
without the hidden field, and displayed to the user. The first
time the PHP program receives the input, the hidden field is
missing, so there will be no field named submitted. The PHP
program re-creates the form, adding the hidden input field. So
when the visitor resubmits the form, the PHP program receives
it with the submitted field set to "yes". The code can simply
check whether the field is present:

if (isset($_POST['submitted']))

{...

Hidden fields can also be useful for storing other details, such
as an ID string that you might create to identify a user, and so
on.

WARNING
Never treat hidden fields as secure—because they are not. Someone
could easily view the HTML containing them by using a browser’s
View Source feature. A malicious attacker could also craft a post that
removes, adds, or changes a hidden field.

<select>

The <select> tag lets you create a drop-down list of options,
offering either single or multiple selections. It conforms to the

following syntax:

<select name="name" size="size" multiple>

The attribute size is the number of lines to display before the
dropdown is expanded; the default is 1. Clicking on the
display causes a list to drop down, showing all the options. If
you use the optional multiple attribute, a user can select
multiple options from the list by pressing the Ctrl key when
clicking. So, to ask a user for their favorite vegetable from a
choice of five, you might use HTML like that in Example 11-
7, which offers a single selection.

Example 11-7. Using <select>

Vegetables

<select name="veg">

 <option value="Peas">Peas</option>

 <option value="Beans">Beans</option>

 <option value="Carrots">Carrots</option>

 <option value="Cabbage">Cabbage</option>

 <option value="Broccoli">Broccoli</option>

</select>

This HTML offers five choices, with the first one, Peas,
preselected (due to it being the first item). Figure 11-6 shows
the output where the list has been clicked to drop it down, and
the option Carrots has been highlighted. If you want to have a
different default option offered first (such as Beans), use the
selected attribute, like this:

<option selected value="Beans">Beans</option>

Figure 11-6. Creating a drop-down list with <select>

You can also allow users to select more than one item, as in
Example 11-8.

Example 11-8. Using <select> with the multiple attribute

Vegetables

<select name="veg" size="5" multiple>

 <option value="Peas">Peas</option>

 <option value="Beans">Beans</option>

 <option value="Carrots">Carrots</option>

 <option value="Cabbage">Cabbage</option>

 <option value="Broccoli">Broccoli</option>

</select>

This HTML is not very different; the size has been changed
to "5", and the attribute multiple has been added. But, as you
can see from Figure 11-7, it is now possible for the user to
select more than one option by using the Ctrl key when
clicking. You can leave out the size attribute if you wish, and
the output will be the same; however, with a larger list, the
drop-down box may display more items, so I recommend that
you pick a suitable number of rows and stick with it. I also
recommend not using multiple select boxes smaller than two
rows in height—some browsers may not correctly display the
scroll bars needed to access them.

Figure 11-7. Using a <select> with the multiple attribute

You can also use the selected attribute within a multiple
select and can, in fact, have more than one option preselected
if you wish.

The submit button
To match the type of form being submitted, you can change
the text of the submit button to anything you like by using the
value attribute, like this:

<input type="submit" value="Search">

You can also replace the standard text button with a graphic
image of your choice, using HTML:

<input type="image" name="submit" src="image.gif" alt="Submit">

Instead of an <input> tag, you can also use a <button> tag to
create a submit button; the advantage is that you can use other
HTML tags to style the text or even include an image:

<button>Search</button>

<button></button>

The autocomplete attribute

You can apply the autocomplete attribute to the <form>
element, or to any of the color, date, email, password,
range, search, tel, text, or url types of the <input>
element.

With autocomplete enabled, previous user inputs are recalled
and automatically entered into fields as suggestions. You can
also disable this feature by turning autocomplete off. Here’s
how to turn autocomplete on for an entire form but disable it
for specific fields (highlighted in bold):

<form action='myform.php' method='post' autocomplete='on'>

 <input type='text' name='type'>

 <input type='text' name='amount' autocomplete='off'>

</form>

There are many possible values for the autocomplete
attribute, for example email, username, current-password,
and new-password to help password managers prefill the
fields with respective values. For the full list please visit the
MDN page on the autocomplete attribute.

The autofocus attribute

The autofocus attribute gives immediate focus to an element
when a page loads. It can be applied to any <input>,
<textarea>, or <button> element, like this:

<input type='text' name='query' autofocus='autofocus'>

NOTE
Browsers that use touch interfaces (such as Android or iOS) usually
ignore the autofocus attribute, leaving it to the user to tap on a field
to give it focus; otherwise, the zooming, focusing, and pop-up
keyboards this attribute would generate could quickly become
annoying.

Because this feature will cause the focus to move into an input
element, the Backspace key will no longer take the user back a

https://oreil.ly/U6MmA

web page (although Alt-Left arrow and Alt-Right arrow will
still move backward and forward within the browsing history).

The placeholder attribute

The placeholder attribute lets you place into any blank input
field a helpful hint to explain to users what they should enter.
You use it like this:

<input type='text' name='name' size='50' placeholder='First &

Last name'>

The input field will display the placeholder text as a prompt
until the user starts typing, at which point the placeholder will
disappear.

The required attribute

The required attribute ensures that a field has been
completed before a form is submitted:

<input type='text' name='creditcard' required>

When the browser detects an attempted form submission
where there’s an uncompleted required input, a message is
displayed, prompting the user to complete the field.

Override attributes
With override attributes, you can override form settings on an
element-by-element basis. So, for example, using the
formaction attribute, you can specify that a submit button
should submit a form to a different URL from the one
specified in the form itself, like the following (in which the
default and overridden action URLs are bold):

<form action='url1.php' method='post'>

 <input type='text' name='field'>

 <input type='submit' formaction='url2.php'>

</form>

HTML also brings support for the formenctype, formmethod,
formnovalidate, and formtarget override attributes, which
you can use in exactly the same manner as formaction to
override one of these settings.

The width and height attributes
Using these new attributes, you can alter the displayed
dimensions of an input image, like this:

<input type='image' src='picture.png' width='120' height='80'>

The step attribute

Often used with min and max, the step attribute supports
stepping through number or date values, like this:

<input type='time' name='meeting' value='12:00'

 min='09:00' max='16:00' step='3600'>

When you are stepping through date or time values, each unit
represents 1 second.

The form attribute

You no longer have to place <input> elements within <form>
elements, because you can specify the form to which an input
applies by supplying a form attribute. The following code
shows a form being created, but with its input outside of the
<form> and </form> tags:

<form action='myscript.php' method='post' id='form1'>

</form>

<input type='text' name='username' form='form1'>

To do this, you must give the form an ID using the id attribute
and refer to this ID in the form attribute of the input element.
This is most useful for adding hidden input fields when you
can’t control how or if the field is placed inside the <form> tag

in the HTML code, or for using JavaScript to modify forms
and inputs on the fly.

The list attribute
Attaching lists to inputs enables users to easily select from a
predefined list, which you can use like this:

Select destination:

<input type='url' name='site' list='links'>

<datalist id='links'>

 <option label='Google' value='http://google.com'>

 <option label='Yahoo!' value='http://yahoo.com'>

 <option label='Bing' value='http://bing.com'>

 <option label='Ask' value='http://ask.com'>

</datalist>

The color input type

The color input type calls up a color picker so that you can
simply click the color of your choice. After submitting the
form, the server receives the color in the hex format. You use
the input like this:

Choose a color <input type='color' name='color'>

The min and max attributes

With the min and max attributes, you can specify minimum and
maximum values for inputs. The browser will then either offer
up and down selectors for the range of values allowed or
simply disallow values outside of that range or mark such
values as invalid. See the following types for example usage.

The number and range input types

The number and range input types restrict input to a number
and optionally also specify an allowed range, like this:

<input type='number' name='age'>

<input type='range' name='num' min='0' max='100' value='50'

step='1'>

Date and time pickers

When you choose an input type of date, month, week, time,
datetime, or datetime-local, a picker will pop up on
supported browsers from which the user can make a selection,
like this one, which inputs the time:

<input type='time' name='time' value='12:34' min='09:00'

max='17:00'>

Chapter 12 will show you how to use cookies and
authentication to store users’ preferences and keep them
logged in, and how to maintain a complete user session.

Sanitizing Input
Now we return to PHP programming. It can’t be emphasized
enough that handling user data is a security minefield, and it is
essential to learn to treat all such data with the utmost caution
from the start. It’s not that difficult to sanitize user input from
potential hacking attempts, and it must be done.

Remember that the safest way to secure MySQL from hacking
attempts is to use placeholders and prepared statements, as
described in Chapter 10. If you do so for all accesses to
MySQL, it is not necessary to manually escape data being
transferred into or out of the database. You will, however, still
need to sanitize input when including it within HTML.

The first thing to remember is that regardless of any
constraints you have placed in an HTML form to limit the
types and sizes of inputs, it is a trivial matter for a hacker to
use their browser’s View Source feature to extract the form
and modify it to provide malicious input to your website.

To prevent such attacks, you must never trust any variable that
you fetch from either the $_GET or $_POST arrays until you
have sanitized it. If you don’t, users may try to inject
JavaScript into the data to interfere with your site’s operation,

or even attempt to add MySQL commands to compromise
your database.

Preventing SQL injection is easy. Use prepared statements and
placeholders as described in Chapter 10. Script injection and
XSS attacks can be stopped by using
the htmlentities function:

$variable = htmlentities($variable);

For example, this would change a string of interpretable
HTML code like hi into hi,
which then displays as text and won’t be interpreted as HTML
tags.

The htmlentities function is identical
to htmlspecialchars, and both can be used to stop the
attacks, but where the former converts all characters which
have HTML entity equivalents, the latter converts only the
special ones:

htmlentities("caffè d'orzo"); // the result is caffè

d'orzo

htmlspecialchars("caffè d'orzo") // the result is caffè

d'orzo

NOTE
This book uses htmlentities in the following examples as it’s
slightly shorter to write, but you could as well use
htmlspecialchars.

If you use htmlentities before storing data in your database,
and then when the data is retrieved from the database to be
rendered to an HTML page, and the component or code that
renders it calls htmlentities a second time, you probably
won’t get what you want. It’ll double-encode and mangle
legitimate quotation marks, ampersands, and angle brackets.
You want to call the function just once.

If you legitimately want to allow user-provided HTML to be
rendered as HTML (which is common, for example, with
popular WYSIWYG editors), look to a robust tool such as the
DOMPurify library available on GitHub.

Since the danger in user-provided content is at the time of
use (as opposed to the time that it is submitted; or at least PHP
handles most of those dangers for you), you may want to
consider deferring sanitization until you know the
requirements for the output data. You may even use the same
piece of data in different contexts: for example, a user-
provided field in a database could be rendered to a web page, a
mobile app, a text email, an HTML email, and SMS. Each
may have different sanitization needs and concerns.

Having solid documentation in your system about the nature of
the content in your database is more valuable than rote
sanitization. Even such a simple expedient as suffixing fields
that may contain HTML with _html can be helpful. You could
expand this by having suffixes like _safe_html (after having
been run through something like DOMPurify), or
_html_entities (for text that was run through
htmlentities).

If you’d like to dive deeper into XSS prevention, you can
check out the article by OWASP (Open Worldwide
Application Security Project) published in its Cheat Sheet
Series.

STRIPPING HTML IS NOT ENOUGH
The function used to strip HTML from an input, strip_tags, won’t
reliably prevent XSS attacks and, depending on the input, can produce
mangled HTML.

An Example Program
Let’s look at how a real-life PHP program integrates with an
HTML form by creating the program convert.php listed in

https://oreil.ly/dmWBL
https://oreil.ly/PwB60

Example 11-9. Type it as shown and try it for yourself.

Example 11-9. A program to convert values between
Fahrenheit and Celsius

<?php // convert.php

 $f = $c = $f_html_entities = $c_html_entities = '';

 if (isset($_POST['f'])) {

 $f = $_POST['f'];

 $f_html_entities = htmlentities($f);

 }

 if (isset($_POST['c'])) {

 $c = $_POST['c'];

 $c_html_entities = htmlentities($c);

 }

 if (is_numeric($f)) {

 $c = intval((5 / 9) * ($f - 32));

 $out = "$f °F equals $c °C";

 } elseif(is_numeric($c)) {

 $f = intval((9 / 5) * $c + 32);

 $out = "$c °C equals $f °F";

 } else

 $out = "";

?>

<html>

 <head>

 <title>Temperature Converter</title>

 </head>

 <body>

 <pre>

 Enter either Fahrenheit or Celsius and click on Convert

 <?php echo $out; ?>

 <form method="post" action="">

 <label>Fahrenheit <input type="text" name="f"

 value="<?php echo $f_html_entities; ?>" size="7">

</label>

 <label>Celsius <input type="text" name="c"

 value="<?php echo $c_html_entities; ?>" size="7">

</label>

 <input type="submit" value="Convert">

 </form>

 </pre>

 </body>

</html>

When you call up convert.php in a browser, the result should
look something like Figure 11-8.

Figure 11-8. The temperature conversion program in action

Let’s break down this code. The first line initializes the
variables $c, $f, $f_html_entities, and $c_html_entities
in case the respective form fields do not get posted to the
program. The next two if blocks fetch the values of either the
field named f or the one named c, for an input Fahrenheit or
Celsius value, and create sanitized values by calling
htmlentities. If the user inputs both, the Celsius is simply
ignored and the Fahrenheit value is converted. The values will
be echoed back to the form later, and the sanitization prevents
the XSS attack.

So, having either submitted values or empty strings in both $f
and $c, the next portion of code constitutes an
if...elseif...else structure that first tests whether $f has
a numeric value. If not, it checks $c; if $c does not have a
numeric value, the variable $out is set to the empty string
(more on that in a moment).

If $f has a numeric value, the variable $c is assigned a simple
mathematical expression that converts the value of $f from
Fahrenheit to Celsius. The formula used is Celsius = (5 / 9) ×
(Fahrenheit – 32). The variable $out is then set to a message
string explaining the conversion.

On the other hand, if $c has a numeric value, a complementary
operation is performed to convert the value of $c from Celsius
to Fahrenheit and assign the result to $f. The formula used is
Fahrenheit = (9 / 5) × Celsius + 32. Then again, the string
$out is set to contain a message about the conversion.

In both conversions, the PHP intval function is called to
convert the result of the conversion to an integer value. It’s not
necessary, but it looks better.

With all the arithmetic done, the program now outputs the
HTML, which starts with the basic head and title and then
contains some introductory text before displaying the value of
$out. If no temperature conversion was made, $out will have
a value of NULL and nothing will be displayed, which is
exactly what we want when the form hasn’t yet been
submitted. But if a conversion was made, $out contains the
result, which is displayed.

After this, we come to the form, which is set to submit using
the POST method to the program itself (represented by a pair
of double quotation marks so that the file can be saved with
any name). Within the form, there are two inputs for either a
Fahrenheit or a Celsius value to be entered. The original
entered value is printed in the value attribute of the respective
field and is sanitized, because it’s a user input. A submit button
with the text Convert is then displayed, and the form is closed.

Try playing with the example by inputting different values into
the fields; for a bit of fun, can you find a value for which
Fahrenheit and Celsius are the same? You may also try
entering HTML (for example ">XSS here) to see why calling
htmlentities is important. Then remove the htmlentities
call and try inputting the same HTML again; you should see a
broken input field with the HTML you have injected. Don’t
forget to put the htmlentities call back after you’re done
playing.

NOTE
All the examples in this chapter have used the POST method to send
form data. I recommend this, as it’s the neatest and most secure
method. However, the forms can easily be changed to use the GET
method, as long as values are fetched from the $_GET array instead of
the $_POST array. Reasons to do this might include making the result
of a search bookmarkable or directly linkable from another page.

At this point, you should be familiar with various form fields
and able to process them in PHP. This will be useful in
Chapter 12, where you’ll learn about logins and sessions. But
before that, let’s refresh what you’ve learned by answering
these questions.

Questions
1. You can submit form data using either the POST or

the GET method. Which associative arrays are used to
pass this data to PHP?

2. What is the difference between a text box and a text
area?

3. If a form needs to offer three choices to a user, each
of which is mutually exclusive so that only one of the
three can be selected, which input type would you
use, given a choice between checkboxes and radio
buttons?

4. How can you submit a group of selections from a web
form using a single field name?

5. How can you submit a form field without displaying
it in the browser?

6. Which HTML tag is used to encapsulate a form
element and supporting text or graphics, making the
entire unit selectable with a mouse-click?

7. Which PHP function converts HTML into a format
that can be displayed but will not be interpreted as
HTML by a browser, preventing attacks like XSS?

8. What form attribute can be used to help users
complete input fields?

9. How can you ensure that an input is completed before
a form gets submitted?

See “Chapter 11 Answers” in the Appendix A for the answers
to these questions.

Chapter 12. Cookies,
Sessions, and
Authentication

As your web projects grow larger and more complicated, you
will find an increasing need to keep track of your users. Even
if you aren’t offering logins and passwords, you still will often
need to store details about a user’s current session and
possibly also recognize them when they return to your site.

Several technologies support this kind of interaction, ranging
from simple browser cookies to session handling and HTTP
authentication. Between them, they offer the opportunity for
you to configure your site to your users’ preferences and
ensure a smooth and enjoyable transition through it.

Using Cookies in PHP
A cookie is an item of data that a web server saves to your
computer’s hard disk via a web browser. It can contain almost
any alphanumeric information (as long as it’s under 4 KB) and
can be retrieved from your computer and returned to the
server. Common uses include session tracking and identifiers,
maintaining data across multiple visits, holding shopping cart
contents, storing non-secure login details (not passwords), and
more.

Because of their privacy implications, cookies can be read
only from the issuing domain. In other words, if a cookie is
issued by, for example, oreilly.com, it can be retrieved only by
a web server using that domain. This prevents other websites
from gaining access to details for which they are not
authorized.

Because of the way the internet works, multiple elements on a
web page can be embedded from multiple domains, each of
which can issue its own cookies. When this happens, they are
referred to as third-party cookies. Most commonly, these are
created by advertising companies to track users across
multiple websites or for analytic purposes.

Because of this, most browsers allow users to turn cookies off
either for the current server’s domain, third-party servers, or
both. Fortunately, most people who disable cookies do so only
for third-party websites.

Cookies are exchanged during the transfer of headers, before
the actual HTML of a web page is sent in the response body,
and it is impossible to send a cookie once any HTML has been
transferred. Therefore, careful planning of cookie usage is
important. Figure 12-1 illustrates a typical request and
response dialog between a web browser and web server
passing cookies.

Figure 12-1. A browser/server request/response dialog with cookies

This exchange shows a browser receiving two pages:

1. The browser issues a request to retrieve the main
page, index.html, at the website
http://www.webserver.com. The first line specifies the
file, and the second header specifies the server.

2. When the web server at webserver.com receives this
pair of headers, it returns some of its own. The second
header defines the type of content to be sent
(text/html), and the third one sends a cookie of the
name name and with the value value. Only then are
the contents of the web page transferred.

3. Once the browser has received the cookie, it will then
return it with every future request made to the issuing
server until the cookie expires or is deleted. So, when
the browser requests the new page /news.html, it also
returns the cookie name with the value value.

4. Because the cookie has already been set, when the
server receives the request to send /news.html, it does
not have to resend the cookie but just returns the
requested page.

NOTE
It is relatively straightforward to edit cookies directly from within the
browser by using built-in developer tools or extensions. Therefore,
because users can change cookie values, you should not put key
information such as usernames in a cookie and trust it blindly without
verifying it, or you face the possibility of having your website
manipulated in unexpected ways. Cookies are best used for storing
data such as language or currency settings.

Setting a Cookie
Setting a cookie in PHP is simple. As long as no HTML has
yet been transferred, you can call the setcookie function (see
Table 12-1), which has the following syntax:

setcookie(name, value, expire, path, domain, secure, httponly);

Table 12-1. The setcookie parameters

Parameter Description Example

name The name of the cookie.
This is the name that your
server will use to access
the cookie on subsequent
browser requests.

location

value The value of the cookie or
the cookie’s contents.
This can contain up to 4
KB of alphanumeric text.

USA

expire (Optional.) The Unix
timestamp of the
expiration date. Generally,
you will probably use time
() plus a number of
seconds. If not set, the
cookie becomes a session
cookie that can be deleted
when the browser is
closed, but you can’t rely
on that behavior: many
browsers will restore
session cookies when the
browser restarts.

time() + 2592000

Parameter Description Example

path (Optional.) The path of
the cookie on the server.
If this is a / (forward
slash), the cookie is
available over the entire
domain, such as
www.webserver.com. If it
is a subdirectory, the
cookie is available only
within that subdirectory.
The default is the current
directory that the cookie
is being set in, and this is
the setting you will
normally use.

/

domain (Optional.) The internet
domain of the cookie. If
this is webserver.com, the
cookie is available to all
of webserver.com and its
subdomains, such as
www.webserver.com and
images.webserver.com. If
it is
images.webserver.com,
the cookie is available
only to
images.webserver.com
and its subdomains, such
as
sub.images.webserver.com
but not, say, to
www.webserver.com.

webserver.com

So, to create a cookie with the name location and the value
USA that is accessible across the entire web server on the
current domain and that will be removed from the browser’s
cache in seven days, use:

setcookie('location', 'USA', time() + 60 * 60 * 24 * 7, '/');

Accessing a Cookie
Reading the value of a cookie is as simple as accessing the
$_COOKIE system array. For example, if you wish to see
whether the browser that issued the request already stores the
cookie called location and, if so, to read its value, use:

if (isset($_COOKIE['location'])) $location =

$_COOKIE['location'];

Parameter Description Example

secure (Optional.) Whether the
cookie must use a secure
connection (https://). If
this value is TRUE, the
cookie can be transferred
only across a secure
connection. The default is
FALSE.

FALSE

httponly (Optional; implemented
since PHP version 5.2.0.)
Whether the cookie must
use the HTTP protocol. If
this value is TRUE, scripting
languages such as
JavaScript cannot access
the cookie. The default is
FALSE.

FALSE

Note that you can read a cookie back only after it has been
sent to a web browser. This means when you issue a cookie,
you cannot read it in again until the browser reloads the page
(or another with access to the cookie) from your website and
passes the cookie back to the server in the process.

Destroying a Cookie
To delete a cookie, you must issue it again and set a date in the
past. It is important for all parameters in your new setcookie
call except the timestamp to be identical to the parameters
when the cookie was first issued; otherwise, the deletion will
fail. Therefore, to delete the cookie created earlier, you would
use:

setcookie('location', 'USA', time() - 2592000, '/');

As long as the time given is in the past, the cookie should be
deleted. However, I have used a time of 2,592,000 seconds
(one month) in the past in case the client computer’s date and
time are not correctly set. You can also provide an empty
string for the cookie value (or a value of FALSE), and PHP will
automatically set its time in the past.

HTTP Authentication
HTTP authentication uses the web server to manage users and
passwords for the application. It’s adequate for simple
applications that ask users to log in, although most
applications will have specialized needs or more stringent
security requirements that call for other techniques.

To use HTTP authentication, PHP sends a header request
asking to start an authentication dialog with the browser. The
server must have this feature turned on for it to work, but
because it’s so common, your server is very likely to offer the
feature.

NOTE
Although it is usually installed with Apache, the HTTP authentication
module may not necessarily be installed on the server you use. So,
attempting to run these examples could generate an error telling you
that the feature is not enabled, in which case you must either install the
module and change the configuration file to load it or ask your system
administrator to make these changes.

After entering your URL into the browser or visiting the page
via a link, the user will see an “Authentication Required”
prompt pop-up, requesting two fields: Username and Password
(Figure 12-2 shows how this looks in Firefox).

Figure 12-2. An HTTP authentication login prompt

Example 12-1 shows the code to make this happen.

Example 12-1. PHP authentication

<?php

 if (isset($_SERVER['PHP_AUTH_USER']) &&

 isset($_SERVER['PHP_AUTH_PW']))

 {

 echo "Welcome User: " .

htmlspecialchars($_SERVER['PHP_AUTH_USER']) .

 " Password: " .

htmlspecialchars($_SERVER['PHP_AUTH_PW']);

 }

 else

 {

 header('WWW-Authenticate: Basic realm="Restricted Area"');

 header('HTTP/1.1 401 Unauthorized');

 die("Please enter your username and password");

 }

?>

The first thing the program does is look for two particular
array values: $_SE RV ER ['P HP_AU TH_US ER'] and
$_SERVER['PHP_AUTH_PW']. If they both exist, they represent
the username and password entered by a user into an
authentication prompt.

NOTE
Notice that when being displayed to the screen, the values that have
been returned in the $_SERVER array are first processed through the
htmlspecialchars function. This is because these values have been
entered by the user and therefore cannot be trusted, as a hacker could
make a cross-site scripting attempt by adding HTML characters and
other symbols to the input. htmlspecialchars translates any such
input into harmless HTML entities.

If either value does not exist, the user has not yet been
authenticated, and you display the prompt in Figure 12-2 by
issuing the following header, where Basic realm is the name
of the section that is protected and appears as part of the pop-
up prompt:

WWW-Authenticate: Basic realm="Restricted Area"

If the user fills out the fields, the PHP program runs again
from the top. But if the user clicks the Cancel button, the
program proceeds to the following two lines, which send the
following header and an error message:

HTTP/1.1 401 Unauthorized

The die statement causes the text “Please enter your username
and password” to be displayed (see Figure 12-3).

Figure 12-3. The result of clicking the Cancel button

NOTE
Once a user has been authenticated, you will not be able to get the
authentication dialog to pop up again unless the user closes and
reopens all browser windows, because the web browser will keep
returning the same username and password to PHP. You may need to
close and reopen your browser a few times as you work through this
section and try different things. The easiest way to do this is to open
up a new private or anonymous window to run these examples, so you
won’t need to close the entire browser.

Now let’s check for a valid username and password. The code
in Example 12-1 doesn’t require you to change much to add
this check, other than modifying the previous welcome
message code to test for a correct username and password and
then issuing a welcome message. A failed authentication
causes an error message to be sent (see Example 12-2).

Example 12-2. PHP authentication with input checking

<?php

 $username = 'admin';

 $password = 'letmein';

 if (isset($_SERVER['PHP_AUTH_USER']) &&

 isset($_SERVER['PHP_AUTH_PW']))

 {

 if ($_SERVER['PHP_AUTH_USER'] === $username &&

 $_SERVER['PHP_AUTH_PW'] === $password)

 echo "You are now logged in";

 else die("Invalid username/password combination");

 }

 else

 {

 header('WWW-Authenticate: Basic realm="Restricted Area"');

 header('HTTP/1.0 401 Unauthorized');

 die ("Please enter your username and password");

 }

?>

When comparing usernames and passwords the === (identity)
operator is used, rather than the == (equals) operator. This is
because we are checking whether the two values match
exactly. The equality operator (==) is not suitable for
comparing login information, because for example, '0e123'
== '0e456' returns true, and this is not a suitable match for
either username or password purposes.

In the previous instance, PHP automatically converted the
strings to numbers, where 0e123 is 0 times 10 raised to the
123rd power, which results in zero, and 0e456 is 0 times 10
raised to the 456th power, which also evaluates to zero.
Therefore, using the == operator, they will match due to their
values both evaluating to zero, and so the result of the
comparison will be true, but the === operator says that the
two parts must be identical in every way, and as these two
strings are different, the test will return false.

A mechanism is now in place to authenticate users, but only
for a single username and password. Also, the password
appears in clear text within the PHP file, and if someone
managed to hack into your server, they would instantly know
it. So, let’s look at a better way to handle usernames and
passwords.

Storing Usernames and Passwords
MySQL is a natural way to store usernames and passwords.
But again, we don’t want to store the passwords as clear text,
because our website could be compromised if the database
were accessed by a hacker. Instead, we’ll use a neat trick
called a one-way function.

This simple function converts a string of text into a seemingly
random string. Because they are one-way, such functions are
impossible to reverse, so their output can be safely stored in a

database—and anyone who steals it will be none the wiser as
to the passwords used.

In previous editions of this book, I recommended using the
MD5 hashing algorithm for your data security. Time marches
on, however, and now MD5 is considered easily hackable and
therefore unsafe. Indeed, even its previously recommended
replacement of SHA-1 can be hacked.

So, now that PHP 5.5 is pretty much the minimum standard
everywhere, I have moved on to using its built-in hashing
function, which is vastly more secure and neatly handles
everything for you.

Previously, to store a password securely, you would have
needed to salt the password, which is a term for adding extra
characters to a password that the user did not enter (to further
obscure it). You then needed to run that new string through a
one-way function to turn it into a seemingly random set of
characters, which used to be hard to crack.

For example, code such as the following (which is now very
insecure, because modern graphics processing units have such
speed and power):

echo hash('ripemd128', 'saltstringmypassword');

would display this value:

9eb8eb0584f82e5d505489e6928741e7

Remember this method is never recommended. Treat this as an
example of what not to do, as it is very insecure. Instead,
please read on.

Using password_hash
From version 5.5 of PHP, there’s a far better way to create
salted password hashes: the password_hash function. Supply
PASSWORD_DEFAULT as its second (required) argument to ask

the function to select the most secure hashing function
currently available. password_hash will also choose a random
salt for every password. (Don’t be tempted to add any more
salting of your own, as this could compromise the algorithm’s
security.) So, the following code:

echo password_hash("mypassword", PASSWORD_DEFAULT);

will return a string such as the following, which includes the
salt and all information required for the password to be
verified:

$2y$10$k0YljbC2dmmCq8WKGf8oteBGiXlM9Zx0ss4PEtb5kz22EoIkXBtbG

NOTE
If you are letting PHP choose the hashing algorithm for you, you
should allow for the returned hash to expand in size over time as better
security is implemented. The developers of PHP recommend that you
store hashes in a database field that can expand to at least 255
characters (even though 60–72 seems to be around the current length
at the time of writing). Should you wish, you can manually select the
BCRYPT algorithm to guarantee a hash string of only 60 characters by
supplying the constant PASSWORD_BCRYPT as the second argument to
the function. However, I don’t recommend this unless you have a very
good reason.

You can supply options (in the form of an optional third
argument) to further tailor how hashes are calculated, such as
the cost or amount of processor time to allocate to the hashing
(more time means more security but a slower server). In PHP
8.3 and older, the cost has a default value of 10, which is the
minimum you should use with BCRYPT. The default cost
value has been increased to 12 in PHP 8.4.

However, I don’t want to confuse you with more information
than you need to be able to store password hashes securely
with minimal fuss, so please refer to the documentation if
you’d like more details on the available options.

Using password_verify

https://oreil.ly/efe7G

To verify that a password matches a hash, use the
password_verify function, passing it the password string a
user has just entered and the stored hash value for that user’s
password (generally retrieved from your database).

So, assuming your user had previously entered the (very
insecure) password of mypassword, and you now have their
password’s hash string (from when the user created their
password) stored in the variable $hash, you could verify that
they match, like this:

if (password_verify("mypassword", $hash))

 echo "Valid";

If the correct password for the hash has been supplied,
password_verify returns the value TRUE, so this if statement
will display the word “Valid.” If it doesn’t match, then FALSE
is returned, and you can ask the user to try again.

An Example Program
Let’s see how these functions work together when combined
with MySQL. First you need to create a new table to store
password hashes, so type the program in Example 12-3 and
save it as setupusers.php (or download it from GitHub), and
then open it in your browser.

Example 12-3. Creating a users table and adding two accounts

<?php //setupusers.php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (\PDOException $e)

 {

 throw new \PDOException($e->getMessage(), (int)$e-

>getCode());

 }

https://github.com/RobinNixon/lpmj7

 $query = "CREATE TABLE users (

 forename VARCHAR(32) NOT NULL,

 surname VARCHAR(32) NOT NULL,

 username VARCHAR(32) NOT NULL UNIQUE,

 password VARCHAR(255) NOT NULL

)";

 $result = $pdo->query($query);

 $forename = 'Bill';

 $surname = 'Smith';

 $username = 'bsmith';

 $password = 'mysecret';

 $hash = password_hash($password, PASSWORD_DEFAULT);

 add_user($pdo, $forename, $surname, $username, $hash);

 $forename = 'Pauline';

 $surname = 'Jones';

 $username = 'pjones';

 $password = 'acrobat';

 $hash = password_hash($password, PASSWORD_DEFAULT);

 add_user($pdo, $forename, $surname, $username, $hash);

 function add_user($pdo, $fn, $sn, $un, $pw)

 {

 $stmt = $pdo->prepare('INSERT INTO users

VALUES(:fn,:sn,:un,:pw)');

 $stmt->execute([

 ':fn' => $fn,

 ':sn' => $sn,

 ':un' => $un,

 ':pw' => $pw

]);

 }

?>

This program will create the table users within your
publications database (or whichever database you set up for
the login.php file in Chapter 10). In this table, it will create
two users: Bill Smith and Pauline Jones. They have the
usernames and passwords of bsmith/mysecret and
pjones/acrobat, respectively.

Using the data in this table, we can now modify Example 12-2
to properly authenticate users, and Example 12-4 shows the
code needed to do this. Type it in or download it from the

companion website, make sure it is saved as authenticate.php,
and then call it up in your browser.

Example 12-4. PHP authentication using MySQL

<?php // authenticate.php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (\PDOException $e)

 {

 throw new \PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 if (isset($_SERVER['PHP_AUTH_USER']) &&

 isset($_SERVER['PHP_AUTH_PW']))

 {

 $stmt = $pdo->prepare('SELECT * FROM users WHERE

username=:un');

 $stmt->execute([':un' => $_SERVER['PHP_AUTH_USER']]);

 if (!$stmt->rowCount()) die("User not found");

 $row = $stmt->fetch();

 $fn = $row['forename'];

 $sn = $row['surname'];

 $un = $row['username'];

 $pw = $row['password'];

 if (password_verify($_SERVER['PHP_AUTH_PW'], $pw))

 echo htmlspecialchars("$fn $sn : Hi $fn,

 you are now logged in as '$un'");

 else die("Invalid username/password combination");

 }

 else

 {

 header('WWW-Authenticate: Basic realm="Restricted Area"');

 header('HTTP/1.1 401 Unauthorized');

 die ("Please enter your username and password");

 }

?>

https://github.com/RobinNixon/lpmj7

NOTE
Depending on hardware, using HTTP authentication will impose
approximately an 80 ms penalty on every request when using
password_verify with passwords hashed with BCRYPT, with the
default cost of 10. This slowdown serves as a barrier for attackers,
preventing them from trying to crack the passwords at maximum
speed. Therefore, HTTP authentication is not a good solution on very
busy sites, where you will likely prefer to use sessions (see “Using
Sessions”).

As you might expect at this point in the book, some of these
examples are starting to get quite a bit longer. But don’t be put
off. The only lines to really concern yourself with at this point
are the ones highlighted in bold. They start by issuing a query
(using placeholders and prepared statements) to MySQL to
look up the user and, if a result is returned, to assign the first
row to $row. Because usernames are unique, there will be only
one row.

Now all that’s necessary is to check the hash value stored in
the database, which is in $row['password'] and is the
previous hash value calculated with password_hash when the
user created their password.

If the hash and the password just supplied by the user verify,
password_verify will return TRUE and a friendly welcome
string will be output, calling the user by their first name (see
Figure 12-4). Otherwise, an error message is displayed.

You can try this by calling up the program in your browser and
entering a username of bsmith and password of mysecret (or
pjones and acrobat), the values that were saved in the
database by Example 12-3.

Figure 12-4. Bill Smith has now been authenticated

NOTE
By replacing dangerous HTML characters with harmless HTML
entities in your data (by calling htmlspecialchars) when sent to the
browser you will block any malicious HTML or JavaScript, and by
using placeholders and prepared statements when querying MySQL
you will block SQL injection attacks.

Using Sessions
Because your program can’t tell what variables were set in
other programs—or even what values the same program set
the previous time it ran—you’ll sometimes want to track what
your users are doing from one web page to another. You can
do this by setting hidden fields in a form, as seen in
Chapter 10, and checking the values of the fields after the
form is submitted, but PHP provides a much more powerful,
more secure, and simpler solution in the form of sessions.
These are groups of variables that are stored on the server but
relate only to the current user. To ensure that the right
variables are applied to the right users, PHP saves a cookie in
the users’ web browsers to uniquely identify them.

NOTE
Google is now phasing out third-party cookies in its browser with a
project called Privacy Sandbox. No doubt other browsers will follow
suit, particularly Opera and Microsoft Edge, which both rely on the
open source Google Chromium codebase. Google is starting to lump
users into groups of 1,000 or so who have similar browser usage and
product interests, so that nobody can be uniquely identified or traced.
In Google’s own words, “The Privacy Sandbox for the Web will phase
out third-party cookies and limit covert tracking. By creating new web
standards it will provide publishers with safer alternatives to existing
technology, so they can continue building digital businesses while
your data stays private.”

This cookie has meaning only to the web server and cannot be
used to ascertain any information about a user; the cookie
contains just a random, arbitrary ID. You might ask about
those users who turned off cookies. Well, today, anyone with
cookies disabled should not expect to have the best browsing
experience, and if you find them disabled you should probably
inform such a user that they require cookies enabled if they
wish to fully benefit from your site, rather than trying to find
ways around the use of cookies, which could create security
issues.

Starting a Session
Starting a session requires calling the PHP function
session_start before any HTML has been output, similarly
to how cookies are sent during header exchanges. Then, to
begin saving session variables, you just assign them as part of
the $_SESSION array, like this:

$_SESSION['variable'] = $value;

They can then be read back just as easily in later program runs,
like this:

$variable = $_SESSION['variable'];

Now assume that you have an application that always needs
access to the first name and last name of each user, as stored in
the table users, which you created a little earlier. Let’s further
modify authenticate.php from Example 12-4 to set up a
session once a user has been authenticated.

Example 12-5 shows the changes needed. The only difference
is the content of the if (password_verify... section, which
we now start by opening a session and saving these variables
into it. Type this program (or modify Example 12-4) and save
it as authenticate2.php. But don’t run it in your browser yet, as
you will also need to create a second program in a moment.

Example 12-5. Setting a session after successful authentication

<?php // authenticate2.php

 require_once 'login.php';

 try

 {

 $pdo = new PDO($attr, $user, $pass, $opts);

 }

 catch (\PDOException $e)

 {

 throw new \PDOException($e->getMessage(), (int)$e-

>getCode());

 }

 if (isset($_SERVER['PHP_AUTH_USER']) &&

 isset($_SERVER['PHP_AUTH_PW']))

 {

 $stmt = $pdo->prepare('SELECT * FROM users WHERE

username=:un');

 $stmt->execute([':un' => $_SERVER['PHP_AUTH_USER']]);

 if (!$stmt->rowCount()) die("User not found");

 $row = $stmt->fetch();

 $fn = $row['forename'];

 $sn = $row['surname'];

 $un = $row['username'];

 $pw = $row['password'];

 if (password_verify($_SERVER['PHP_AUTH_PW'], $pw))

 {

 session_start();

 $_SESSION['forename'] = $fn;

 $_SESSION['surname'] = $sn;

 echo htmlspecialchars("$fn $sn : Hi $fn,

 you are now logged in as '$un'");

 die ("<p>Click here to continue

</p>");

 }

 else die("Invalid username/password combination");

 }

 else

 {

 header('WWW-Authenticate: Basic realm="Restricted Area"');

 header('HTTP/1.0 401 Unauthorized');

 die ("Please enter your username and password");

 }

?>

One other addition to the program is the “Click here to
continue” link with a destination URL of continue.php. This
will be used to illustrate how the session will transfer to
another program or PHP web page. So, create continue.php by
typing the program in Example 12-6 and saving it.

Example 12-6. Retrieving session variables

<?php // continue.php

 session_start();

 if (isset($_SESSION['forename']))

 {

 $forename = htmlspecialchars($_SESSION['forename']);

 $surname = htmlspecialchars($_SESSION['surname']);

 echo "Welcome back $forename.

 Your full name is $forename $surname.
";

 }

 else echo "Please click here

to log in.";

?>

Now you are ready to call up authenticate2.php into your
browser. Enter a username of bsmith and password of
mysecret (or pjones and acrobat) when prompted and click

the link to load continue.php. When your browser calls it up,
the result should be something like Figure 12-5.

Figure 12-5. Maintaining user data with sessions

Sessions neatly confine to a single program the extensive code
required to authenticate and log in a user. Once a user has been
authenticated, and you have created a session, your program
code becomes very simple indeed. You need only call up
session_start and look in $_SESSION for any variables you
need to access.

In Example 12-6, a quick test of whether
$_SESSION['forename'] has a value is enough to let you
know that the current user is authenticated, because session
variables are stored on the server (unlike cookies, which are
stored in the web browser) and can therefore be trusted.

If $_SESSION['forename'] has not been assigned a value, no
session is active, so the last line of code in Example 12-6
directs users to the login page at authenticate2.php.

Ending a Session
When the time comes to end a session, usually when a user
requests to log out from your site, you can use the
session_destroy function, as in Example 12-7. This example
provides a useful function for totally destroying a session,
logging a user out, and unsetting all session variables. The
session_get_cookie_params function returns the current
session cookie information, and we’ll use it to get the path
used to set the cookie.

Example 12-7. A handy function to destroy a session and its
data

<?php

 function destroy_session_and_data()

 {

 $_SESSION = array();

 $params = session_get_cookie_params();

 setcookie(session_name(), '', time() - 2592000,

$params['path']);

 session_destroy();

 }

?>

To see this in action, you could modify continue.php as in
Example 12-8.

Example 12-8. Retrieving session variables and then
destroying the session

<?php

 session_start();

 if (isset($_SESSION['forename']))

 {

 $forename = $_SESSION['forename'];

 $surname = $_SESSION['surname'];

 destroy_session_and_data();

 echo htmlspecialchars("Welcome back $forename");

 echo "
";

 echo htmlspecialchars("Your full name is $forename

$surname.");

 }

 else echo "Please click here to

log in.";

 function destroy_session_and_data()

 {

 $_SESSION = array();

 $params = session_get_cookie_params();

 setcookie(session_name(), '', time() - 2592000,

$params['path']);

 session_destroy();

 }

?>

The first time you navigate from authenticate2.php to
continue.php, it will display all the session variables. But,
because of the call to destroy_session_and_data, if you
then click your browser’s Reload button, the session will have
been destroyed and you’ll be prompted to return to the login
page.

Setting a Timeout
At other times you might wish to close a user’s session
yourself, such as when the user has forgotten or neglected to
log out, and you want the program to do so for them for their
own security. You do this by setting the timeout after which a
logout will automatically occur if there has been no activity. It
may also be a good idea to warn the user through a message or
a dialog that their session will end soon and allow them to
choose to continue the session, but that goes beyond the scope
of the following example.

To set a timeout, use the ini_set function to set the timeout to
exactly one day (the letters gc standing for garbage
collection):

ini_set('session.gc_maxlifetime', 60 * 60 * 24);

If you wish to know the current timeout period, you can
display it using:

echo ini_get('session.gc_maxlifetime');

Session Security
Although I mentioned that once you had authenticated a user
and set up a session you could safely assume that the session
variables were trustworthy, this isn’t exactly the case. The
reason is that it’s possible to use packet sniffing (sampling of

data being transferred across an internet connection) to
discover session IDs passing across a network.

The only truly secure way of preventing these from being
discovered is to implement Transport Layer Security (TLS, the
more secure successor to the Secure Sockets Layer, or SSL)
and run HTTPS instead of HTTP web pages. That’s beyond
the scope of this book, although you can refer to the Apache
documentation for details on setting up a secure web server.

Preventing session hijacking
You can further authenticate users by storing their IP addresses
along with their other details by adding a line such as the
following when you store their sessions:

$_SESSION['ip'] = $_SERVER['REMOTE_ADDR'];

Then, as an extra check, whenever any page loads and a
session is available, perform the following check. It calls the
function different_user if the stored IP address doesn’t
match the current one:

if ($_SESSION['ip'] !== $_SERVER['REMOTE_ADDR'])

different_user();

The code you place in your different_user function is up to
you. I recommend that you either delete the current session
and ask the user to log in again due to a technical error or, if
you have their email address, email them a link to confirm
their identity, which will enable them to retain all the data in
the session.

Of course, you need to be aware that users on the same proxy
server, or sharing the same IP address on a home or business
network, will have the same IP address. And on the other
hand, many networks will change the assigned IP address at
random and mobile devices can use multiple IP addresses in a
given browsing session, so this approach could eventually

https://oreil.ly/9eAX2

result in usability problems. Storing IP addresses can also
present a privacy challenge because some countries view them
as personal information.

You can also store a copy of the browser user-agent string (a
string that developers put in their browsers to identify them by
type and version), which might also distinguish users due to
the wide variety of browser types, versions, and computer
platforms in use (although this is not a perfect solution, and
the string will change if the browser auto-updates). Use the
following to store the user agent:

$_SESSION['ua'] = $_SERVER['HTTP_USER_AGENT'];

And use this to compare the current user-agent string with the
saved one:

if ($_SESSION['ua'] !== $_SERVER['HTTP_USER_AGENT'])

different_user();

Or, better still, combine the two checks like this and save the
combination as a hash hexadecimal string:

$hash_algo = 'ripemd128'; // See

https://www.php.net/function.hash-algos

$_SESSION['check'] = hash($hash_algo, $_SERVER['REMOTE_ADDR'] .

 $_SERVER['HTTP_USER_AGENT']);

And use the following code, which uses the hash_equals
function to safely compare two hashes, the current and stored
strings:

$hash_algo = 'ripemd128'; // See

https://www.php.net/function.hash-algos

$check = hash($hash_algo, $_SERVER['REMOTE_ADDR'] .

$_SERVER['HTTP_USER_AGENT']);

if (!hash_equals($_SESSION['check'], $check)) different_user();

Forcing cookie-only sessions

You should require your users to enable cookies for your
website. It solves a lot of security problems, at least partially,
like the session fixation attack mentioned in “Preventing
session fixation”. There are two configuration options,
session.use_cookies and session.use_only_cookies,
both enabled by the default PHP configuration, but it’s
recommended to set those explicitly using the ini_set
function, because the PHP could be configured differently on
your server:

ini_set('session.use_cookies', 1);

ini_set('session.use_only_cookies', 1);

With the former one (session.use_cookies) enabled, PHP
will use cookies, if available, to store the session ID and
otherwise will store it in the URL. With the latter one
(session.use_only_cookies) enabled, PHP will use only
cookies, never the URL, to store the session ID.

If you use this security measure, I also recommend that you
inform your users that your site requires cookies (but only if
the user has cookies disabled, and especially if the user is in a
part of the world that requires cookie notifications), so they
know what’s wrong if they don’t get the results they want.

Preventing session fixation
Session fixation happens when a malicious third party obtains
a valid session ID (which could be server-generated) and
makes the user authenticate themselves with that session ID,
instead of authenticating with their own. It can happen when
an attacker takes advantage of the ability to pass a session ID
in the GET part of a URL, like this:

http://yourserver.com/authenticate.php?PHPSESSID=123456789

In this example, the made-up session ID of 123456789 is
being passed to the server. This case can be prevented by using

only cookies to store session IDs, as already explained, and by
using a strict session ID mode.

The following code will enable the strict mode and, once
enabled, PHP will reject uninitialized, completely made-up
session IDs (like in the previous example), even if passed in a
cookie:

ini_set('session.use_strict_mode', 1);

Using the strict session ID mode is recommended; however,
the attacker can still visit the application, let it generate a
session ID, which is not made-up anymore, and then try
to fixate that ID with, for example, an XSS attack even when
cookies are used to store the ID. But with the strict mode, they
at least have to do more work for their attack to succeed.

To prevent the session fixation attack, change the session ID
using session_regen era te_i d as soon as the user
authentication status changes, for example after verifying the
password during login. This function keeps all current session
variable values but replaces the session ID with a new one that
an attacker cannot know.

Example 12-9 shows how to add session_regenerate_id to
the relevant part of the authenticate2.php file created in
Example 12-5.

Example 12-9. Session regeneration

if (password_verify($_SERVER['PHP_AUTH_PW'], $pw))

{

 session_start();

 session_regenerate_id();

 $_SESSION['forename'] = $fn;

 $_SESSION['surname'] = $sn;

 echo htmlspecialchars("$fn $sn : Hi $fn,

 you are now logged in as '$un'");

 die ("<p>Click here to continue

</p>");

}

This way, an attacker can come back to your site using any of
the session IDs that they generated, but none of them will call
up another user’s session, as they will all have been replaced
with regenerated IDs, which you can verify by watching the
cookie value change in developer tools after you load the
script in your browser.

Using a shared server
On a server shared with other accounts, you do not want to
save all your session data into the same directory as theirs.
Instead, you should choose a directory that only your account
has access to (and that is not web-visible) to store your
sessions, by placing an ini_set call near the start of your
program, like this:

ini_set('session.save_path', '/home/user/myaccount/sessions');

The configuration option will keep this new value only during
the program’s execution, and the original configuration will be
restored at the program’s ending.

This sessions folder can fill up quickly; you might want to
periodically clear out older sessions according to how busy
your server gets. The more it’s used, the less time you will
want to keep a session stored.

NOTE
Remember that your websites can and will be subject to hacking
attempts. There are automated bots running riot around the internet,
trying to find sites vulnerable to exploits. So, whatever you do,
whenever you are handling data that is not 100% generated within
your own program, you should always treat it with the utmost caution.

You should now have a very good grasp of both PHP and
MySQL, which you can confirm by answering the following
questions. Then Chapter 13 introduces the third major
technology covered by this book: JavaScript.

Questions
1. Why must a cookie be transferred at the start of a

program?

2. Which PHP function stores a cookie in a web
browser?

3. How can you destroy a cookie?

4. Where are the username and password stored in a
PHP program when you are using HTTP
authentication?

5. Why is the password_hash function a powerful
security measure?

6. What is meant by salting a string?

7. What is a PHP session?

8. How do you initiate a PHP session?

9. What is session hijacking?

10. What is session fixation?

See “Chapter 12 Answers” in the Appendix A for the answers
to these questions.

Chapter 13. Exploring
JavaScript

JavaScript brings dynamic functionality to your websites.
Every time you see something pop up when you mouse over
an item in the browser, or see new text, colors, or images
appear on the page in front of your eyes, or grab an object on
the page and drag it to a new location—these are done through
JavaScript (or CSS). JavaScript offers effects that are not
otherwise possible, because it runs inside the browser and has
direct access to all the elements in a web document.

JavaScript first appeared in the Netscape Navigator browser in
1995, coinciding with the addition of support for Java
technology in the browser. Because of the initial incorrect
impression that JavaScript was a spin-off of Java, there has
been some long-term confusion over their relationship.
However, the naming was just a marketing ploy to help the
new scripting language benefit from the popularity of the Java
programming language.

JavaScript gained new power when the HTML elements of the
web page got a more formal, structured definition in what is
called the Document Object Model (DOM). The DOM makes
it relatively easy to add a new paragraph or focus on a piece of
text and change it.

Because both JavaScript and PHP support much of the
structured programming syntax used by the C programming
language, they look very similar to each other. They are both
fairly high-level languages, too. Also, they are weakly typed,
so it’s easy to change a variable to a new type just by using it
in a new context.

Now that you have learned PHP, you should find JavaScript
even easier. And you’ll be glad you did, because it’s at the
heart of the asynchronous communication technology that
provides the fluid web frontends that savvy web users expect
these days.

Outputting the Results
When teaching programming, it’s necessary to have a quick
and easy way to display the results of expressions. In PHP (for
example) there are the echo and print statements, which
simply send text to the browser or the terminal if the script is
executed from the command line, so that’s easy. In JavaScript,
though, there are the following alternatives.

Using console.log
The console.log function will output the result of any value
or expression passed to it in the console of the current browser.
This is a special mode with a frame or window separate from
the browser window, and in which errors and other messages
can be made to display. You can find the console in the
browser developer tools, so you may want to open it when
trying out the following examples as the console will be used
to display the output.

Using alert
The alert function displays values or expressions passed to it
in a pop-up window, which requires you to click a button to
close. Clearly this can become quite irritating, and it has the
downside of displaying only the current message—previous
ones are erased.

Writing into Elements

It is possible to write directly into the text of an HTML
element, which is a fairly elegant solution (and the best one for
production websites)—except that for this book every example
would require such an element to be created, and some lines of
code to access it. This gets in the way of teaching the core of
an example and would make the code overly cumbersome and
confusing.

Using document.write
The document.write function writes a value or expression at
the current browser location and at first glance seems the
perfect choice for quickly displaying results. It keeps all the
examples short and sweet by placing the output right there in
the browser next to the web content and code.

You may, however, have heard that some developers regard
this function as unsafe, because when you call it after a web
page is fully loaded, it will overwrite the current document.

I never use document.write in production code (except in the
very rarest circumstances where it is necessary). Instead, I
almost always use the preceding option of writing directly into
a specially prepared element, per the more complex examples
in Chapter 17 onward (which access the innerHTML property
of elements for program output).

JavaScript and HTML Text
Executing JavaScript code requires a JavaScript engine. All
modern web browsers have a JavaScript engine, allowing the
browser itself to execute JavaScript. Node.js, which we will
explore later, is a JavaScript engine that doesn’t require a
browser and is suitable for desktop or server-side use.

To add a JavaScript code to your web page, you place it
between opening <script> and closing </script> HTML

tags. Note that a typical “Hello World” document using
JavaScript might look like Example 13-1.

Example 13-1. “Hello World” displayed using JavaScript

<html>

 <head><title>Hello World</title></head>

 <body>

 <script>

 console.log("Hello World")

 </script>

 <noscript>

 Your browser doesn't support or has disabled JavaScript

 </noscript>

 </body>

</html>

Within the <script> tags is a single line of JavaScript code
that uses its equivalent of the PHP echo or print commands,
console.log. As you’d expect and as already explained, it
simply outputs the supplied string to the browser console,
where it is displayed.

You also may have noticed that, unlike with PHP, there is no
trailing semicolon (;). This is because a newline often, but not
always, serves the same purpose as a semicolon in JavaScript.
However, if you wish to have more than one statement on a
single line, you do need to place a semicolon after each
command except the last one. Of course, if you wish, you can
add a semicolon to the end of every statement, and your
JavaScript will work fine. My personal preference is to leave
out the semicolon because it’s often superfluous. At the end of
the day, though, the choice may come down to the team you
work on. So, if in doubt, just add the semicolons.

The other thing to note in this example is the <noscript> and
</noscript> pair of tags. These are used when you wish to
offer alternative HTML to users whose browsers do not
support or have disabled JavaScript. Using these tags is up to
you, as they are not required, but you ought to use them at
least to tell users that JavaScript is required, because in

complex apps, providing static HTML alternatives to the
operations you provide using JavaScript may be difficult.
However, the remaining examples in this book will omit
<noscript> tags, because we’re focusing on what you can do
with JavaScript, not what you can do without it.

When Example 13-1 is loaded, a web browser with JavaScript
enabled will output the following (as shown in Figure 13-1):

Hello World

Figure 13-1. JavaScript, enabled and working

A browser with JavaScript disabled will display the following
message (as shown in Figure 13-2):

Your browser doesn't support or has disabled JavaScript

Figure 13-2. JavaScript, disabled

Using Scripts Within a Document Head
In addition to placing a script within the body of a document,
you can put it in the <head> section, which is the ideal place if
you wish to execute a script when a page loads.

A generally accepted best practice is to place framework files
(like jQuery or React or the like) in the <head> element but
actual functionality at the bottom of the page just before the
closing </body> tag to wait for the entire page to load and the
Document Object Model (we’ll discuss it a bit later) to be
available.

Including JavaScript Files
In addition to writing JavaScript code directly in HTML
documents, you can include files of JavaScript code either
from your website or from anywhere on the internet. The
syntax for this is:

<script src="script.js"></script>

Or, to pull in a file from the internet, use:

<script src="http://someserver.com/script.js"></script>

As for the script files themselves, they must not include any
<script> or </script> tags; putting them in the JavaScript
files will cause an error.

Including script files is the preferred way to use third-party
JavaScript files on your website.

Debugging JavaScript Errors
When you’re learning JavaScript, it’s important to be able to
track typing or other coding errors. Unlike PHP, which
displays error messages in the browser, JavaScript displays the
errors in the browser console in the developer tools. You can
open the console by pressing F12 and selecting the Console
tab, or by pressing Ctrl-Shift-J on a PC or Cmd-Shift-J on a
Mac.

DEVELOPER TOOLS IN SAFARI
To view the JavaScript console in Safari, you first need to enable the
Develop menu by selecting “Show features for developers” in Safari
→ Preferences → Advanced. Then press Cmd-Opt-C, or select the
Show JavaScript Console item in the Develop menu in Safari’s menu
bar.

Please refer to the browser developers’ documentation on their
websites for full details on using them.

Using Comments
Because of their shared inheritance from the C programming
language, PHP and JavaScript have many similarities, one of
which is commenting. First, there’s the single-line comment,
like this:

// This is a comment

This style uses a pair of forward slash characters (//) to
inform JavaScript that everything that follows on the current
line is to be ignored. You also have multiline comments, like
this:

/* This is a section

 of multiline comments

 that will not be

 interpreted */

You start a multiline comment with the sequence /* and end it
with */. Just remember that you cannot nest multiline
comments, so make sure that you don’t comment out large
sections of code that already contain multiline comments.

A common variant of a multiline comment that is used to
document functions and other code is called JSDoc:

/**

 * Show a page notification.

 * @param {string} message

 */

Semicolons
Unlike PHP, JavaScript generally does not require semicolons
if you have only one statement on a line. Therefore, the
following is valid:

x += 10

However, when you wish to place more than one statement on
a line, you must separate them with semicolons, like this:

x += 10; y -= 5; z = 0

You can leave the final semicolon off, because the newline
terminates the final statement.

WARNING
There are exceptions to the semicolon rule. If you write JavaScript
bookmarklets or end a statement with a variable or function reference,
and the first character of the line below is a left parenthesis or bracket,
you must remember to append a semicolon or the JavaScript will fail.
When in doubt, use a semicolon.

Variables
No particular character identifies a variable in JavaScript like
the dollar sign does in PHP. Instead, variables use these rules:

A variable may include only the letters a–z, A–Z, 0–9,
the $ symbol, and the underscore (_).

No other characters, such as spaces or punctuation,
are allowed in a variable name.

The first character of a variable name can be only a–
z, A–Z, $, or _ (no numbers).

Names are case-sensitive. Count, count, and COUNT
are all different variables.

There is no set limit on variable name lengths.

And yes, you’re right: a $ is in that list of allowed characters.
It is allowed by JavaScript and may be the first character of a
variable or function name. This lets you port a lot of PHP code
more quickly to JavaScript. That said, I don’t recommend
keeping the $ character because it is frequently employed by
jQuery as an alias.

String Variables
JavaScript string variables should be enclosed in either single
or double quotation marks, like this:

greeting = "Hello there"

warning = 'Be careful'

You may include a single quote within a double-quoted string
or a double quote within a single-quoted string. But you must
escape a quote of the same type by using the backslash
character, like this:

greeting = "\"Hello there\" is a greeting"

warning = '\'Be careful\' is a warning'

To use or copy a string variable, you can assign it to another
one, like this:

newstring = oldstring

or you can use it in a function, like this:

status = "All systems are working"

console.log(status)

Numeric Variables
Creating a numeric variable is as simple as assigning a value,
as in these examples:

count = 42

temperature = 98.4

Like strings, numeric variables can be read from and used in
expressions and functions.

Arrays
JavaScript arrays are also very similar to those in PHP, in that
an array can contain string or numeric data, as well as other
arrays. To assign values to an array, use the following syntax
(which in this case creates an array of strings):

toys = ['bat', 'ball', 'whistle', 'puzzle', 'doll']

To create a multidimensional array (or, more accurately, an
array of arrays), nest smaller arrays within a larger one. So, to

create a two-dimensional array containing the colors of a
single face of a scrambled Rubik’s Cube (where the colors red,
green, orange, yellow, blue, and white are represented by their
capitalized initial letters), you could use this code:

face =

[

 ['R', 'G', 'Y'],

 ['W', 'R', 'O'],

 ['Y', 'W', 'G']

]

The preceding example has been formatted to make it obvious
what is going on, but it could also be written like this:

face = [['R', 'G', 'Y'], ['W', 'R', 'O'], ['Y', 'W', 'G']]

or even like this:

top = ['R', 'G', 'Y']

mid = ['W', 'R', 'O']

bot = ['Y', 'W', 'G']

face = [top, mid, bot]

To access the element two down and three along in this matrix,
you would use the following (because array elements start at
position 0):

console.log(face[1][2])

This statement will output the letter O for orange.

NOTE
JavaScript arrays are powerful storage structures, and Chapter 15
discusses them in much greater depth.

Operators

Operators in JavaScript, as in PHP, can involve mathematics,
changes to strings, and comparison and logical operations
(and, or, etc.). JavaScript mathematical operators look a lot
like plain arithmetic—for instance, the following statement
outputs 15:

console.log(13 + 2)

The following sections teach you about the various operators.

Arithmetic Operators
Arithmetic operators are used to perform mathematics. You
can use them for the main four operations (addition,
subtraction, multiplication, and division) as well as to find the
modulus (more precisely, the remainder after a division) and to
increment or decrement a value (see Table 13-1).

Table 13-1. Arithmetic operators

Operator Description Example

+ Addition j + 12

– Subtraction j – 22

* Multiplication j * 7

/ Division j / 3.13

% Modulus (division
remainder)

j % 6

++ Increment ++j

-- Decrement --j

Assignment Operators

The assignment operators are used to assign values to
variables. They start with the very simple = and move on to
+=, –=, and so on. The operator += adds the value on the right
side to the variable on the left, instead of totally replacing the
value on the left. Thus, if count starts with the value 6, the
statement:

count += 1

sets count to 7, just like the more familiar assignment
statement:

count = count + 1

Table 13-2 lists the assignment operators available.

Table 13-2. Assignment operators

Operator Example Equivalent to

= j = 99 j = 99

+= j += 2 j = j + 2

+= j += 'string' j = j + 'string'

–= j –= 12 j = j – 12

*= j *= 2 j = j * 2

/= j /= 6 j = j / 6

%= j %= 7 j = j % 7

Comparison Operators
Comparison operators are used inside a construct such as an
if statement, where you need to compare two items. For
example, you may wish to know whether a variable you have
been incrementing has reached a specific value, or whether

another variable is less than a set value, and so on (see
Table 13-3).

Table 13-3. Comparison operators

Operator Description Example

== Is equal to j == 42

!= Is not equal to j != 17

> Is greater than j > 0

< Is less than j < 100

>= Is greater than or equal
to

j >= 23

<= Is less than or equal to j <= 13

=== Is equal to (and of the
same type)

j === 56

!== Is not equal to (and of
the same type)

j !== '1'

Logical Operators
Unlike PHP, JavaScript’s logical operators do not include and
and or equivalents to && and ||, and there is no xor operator
(see Table 13-4).

Table 13-4. Logical operators

Operator Description Example

&& And j == 1 && k == 2

|| Or j < 100 || j > 0

! Not ! (j == k)

Incrementing, Decrementing, and Shorthand
Assignment
The following forms of post- and pre-incrementing and
decrementing that you learned to use in PHP are also
supported by JavaScript, as are shorthand assignment
operators:

++x

--y

x += 22

y -= 3

String Concatenation
JavaScript handles string concatenation slightly differently
from PHP. Instead of the . (period) operator, it uses the plus
sign (+), like this:

console.log("You have " + messages + " messages.")

Assuming that the variable messages is set to the value 3, the
output from this line of code will be:

You have 3 messages.

Just as you can add a value to a numeric variable with the +=
operator, you can also append one string to another the same
way:

name = "James"

name += " Dean"

Escape Characters
Escape characters, which you’ve seen used to insert quotation
marks in strings, can also be used to insert various special
characters such as tabs, newlines, and carriage returns. Here is
an example using tabs to lay out a heading—it is included here
merely to illustrate escapes, because in web pages, there are
better ways to do layout:

heading = "Name\tAge\tLocation"

Table 13-5 details the escape characters available.

Table 13-5. JavaScript’s escape characters

Character Meaning

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab

\' Single quote (or apostrophe)

\" Double quote

\\ Backslash

\XXX An octal number between 000 and 377 that
represents the Latin-1 character equivalent
(such as \251 for the © symbol)

\xXX A hexadecimal number between 00 and FF
that represents the Latin-1 character
equivalent (such as \xA9 for the © symbol)

\uXXXX A hexadecimal number between 0000 and F
FFF that represents the Unicode character
equivalent (such as \u00A9 for the ©
symbol)

Variable Typing
Like PHP, JavaScript is a very loosely typed language; the type
of a variable is determined only when a value is assigned, and
it can change as the variable appears in different contexts.

Usually, you don’t have to worry about the type; JavaScript
figures out what you want and just does it.

JAVASCRIPT BUT WITH TYPES
If you’d like to use JavaScript but also love types, you can use
TypeScript, a programming language released in 2012 that adds types
to JavaScript.

Take a look at Example 13-2, in which:

1. The variable n is assigned the string value
'838102050'. The next line prints out its value, and
the typeof operator is used to look up the type.

2. n is given the value returned when the numbers 12345
and 67890 are multiplied together. This value is also
838102050, but it is a number, not a string. The type
of the variable is then looked up and displayed.

3. Some text is appended to the number n and the result
is displayed.

Example 13-2. Setting a variable’s type by assignment

<script>

 n = '838102050' // Set 'n' to a string

 console.log('n = ' + n + ', and is a ' + typeof n)

 n = 12345 * 67890; // Set 'n' to a number

 console.log('n = ' + n + ', and is a ' + typeof n)

 n += ' plus some text' // Change 'n' from a number to a string

 console.log('n = ' + n + ', and is a ' + typeof n)

</script>

The output from this script looks like this:

n = 838102050, and is a string

n = 838102050, and is a number

n = 838102050 plus some text, and is a string

If there is ever any doubt about the type of a variable, or you
need to ensure that a variable has a particular type, you can

force it to that type by using statements such as the following
(which, respectively, turn a string into a number and a number
into a string):

n = "123"

n *= 1 // Convert 'n' into a number

n = 123

n += "" // Convert 'n' into a string

Or you can use these functions in the same way:

n = "123"

n = parseInt(n) // Convert 'n' into an integer number

n = parseFloat(n) // Convert 'n' into a floating point number

n = 123

n = n.toString() // Convert 'n' into a string

You can read more about type conversion in JavaScript at
javascript.info/type-conversions. And you can always look up
a variable’s type by using the typeof operator.

NOTE
Using typeof on values like null or [] may give unexpected results
as both typeof null and typeof [] return "object".

Functions
As with PHP, JavaScript functions are used to separate out
sections of code that perform a particular task. To create a
function, declare it as shown in Example 13-3.

Example 13-3. A simple function declaration

<script>

 function product(a, b) {

 return a * b

 }

</script>

https://oreil.ly/0lbqE

This function takes the two parameters passed, multiplies them
together, and returns the product.

Global Variables
Global variables are ones defined outside of any functions (or
defined within functions but without the var keyword). They
can be defined as:

 a = 123 // Global scope

var b = 456 // Global scope

if (a == 123) var c = 789 // Global scope

Regardless of whether you are using the var keyword, as long
as a variable is defined outside of a function, it is global in
scope and every part of a script can have access to it.

Local Variables
Parameters passed to a function automatically have local
scope, that is, they can be referenced only from within that
function. However, there is one exception. Arrays are passed
to a function by reference, so if you modify any elements in an
array parameter, the elements of the original array will be
modified.

To define a local variable that has scope only within the
current function, and has not been passed as a parameter, use
the var keyword. Example 13-4 shows a function that creates
one variable with global scope (not recommended to create
variables like this) and two with local scope.

Example 13-4. A function creating variables with global and
local scope

<script>

 function test() {

 a = 123 // Global scope, discouraged

 var b = 456 // Local scope

 if (a == 123) var c = 789 // Local scope

 }

</script>

To test whether scope setting has worked in PHP, we can use
the isset function. But in JavaScript there is no such
function, so Example 13-5 uses the typeof operator, which
returns the string undefined when a variable is not defined.

Example 13-5. Checking the scope of the variables defined in
the function test

<script>

 test()

 if (typeof a != 'undefined') console.log('a = "' + a + '"')

 if (typeof b != 'undefined') console.log('b = "' + b + '"')

 if (typeof c != 'undefined') console.log('c = "' + c + '"')

 function test() {

 a = 123

 var b = 456

 if (a == 123) var c = 789

 }

</script>

The output from this script is the following single line:

a = "123"

This shows that only the variable a was given global scope,
which is exactly what we would expect, since the variables b
and c were given local scope by being prefaced with the var
keyword.

If your browser issues a warning about b being undefined, the
warning is correct but it can be ignored.

Using let
JavaScript now offers two new keywords: let and const, and
you should be using them instead of the rather legacy var. The

let keyword is pretty much a swap-in for var, but it has the
advantage that you cannot redeclare a variable in the same
scope once you have done so with let, although you can with
var.

You see, the fact that you could redeclare variables using var
was leading to obscure bugs, such as:

var hello = "Hello there"

var counter = 1

if (counter > 0)

{

 var hello = "How are you?"

}

console.log(hello)

Can you see the problem? Because counter is greater than 0
(since we initialized it to 1), the string hello is redefined as
“How are you?” which is then displayed in the console.

If you replace the var with let (as follows), the second
declaration is seemingly ignored as the string “How are you?”
is visible only in the if block, where it is unused. The original
string “Hello there” will be displayed instead:

let hello = "Hello there"

let counter = 1

if (counter > 0)

{

 let hello = "How are you?"

}

console.log(hello)

The var keyword is either globally scoped (if outside of any
blocks or functions) or function scoped, and variables declared
with it are initialized with undefined, so they can be
referenced before the var declaration, but the let keyword is
either globally or block scoped, and variables are not

initialized, meaning variables cannot be referenced before the
let declaration.

Any variable assigned using let has scope either within the
entire document if declared outside of any block, or, if
declared within a block bounded by {} (which includes
functions), its scope is limited to that block (and any nested
sub-blocks). If you declare a variable within a block but try to
access it from outside that block, an error will be returned, as
with the following, which will fail at the console.log
because hello will have no value:

let counter = 1

if (counter > 0)

{

 let hello = "How are you?"

}

console.log(hello)

Although the practice is discouraged, you can use let to
declare variables of the same name as previously declared
ones, as long as it is within a new scope, in which case any
previous value assigned to a variable of the same name in the
previous scope will become inaccessible to the new scope,
because the new variable of the same name is treated as totally
different from the previous one. It has scope only within the
current block, or any sub-blocks (unless another let is used to
declare yet another variable of the same name in a sub-block).

It is good practice to avoid the reuse of meaningful variable
names, or you risk causing confusion. However, loop or index
variables such as i (or other short and simple names) can be
reused in new scopes without causing confusion.

Using const
You can further increase your control over scope by declaring
a variable to have a constant value, that is, one that cannot be

changed. This is beneficial when you have created a variable
that you are treating as a constant but had declared it only
using var or let, because you might have instances in your
code where you try to change that value, which would be
allowed but would be a bug.

However, if you use the const keyword to declare the variable
and assign its value, any attempt to change the value later will
be disallowed, and your code will halt with an error message
in the console similar to:

Uncaught TypeError: Assignment to constant variable

The following code will cause that error:

const hello = "Hello there"

let counter = 1

if (counter > 0)

{

 hello = "How are you?"

}

console.log(hello)

Unlike strings, arrays and objects can be modified, for
example added to, as you don’t modify the variable itself but
only change its internals:

const array = [1, 2]

array.push(3) // Works, will add 3 to the array

array = [4, 5, 6] // Will throw an error

Just like let, const declarations are also block scoped (within
{} sections and any sub-blocks), meaning that you can have
constant variables of the same name but have different values
in different scopes of a piece of code. However, I strongly
recommend you try to avoid duplication of names and keep
any constant name for one single value throughout each
program, using a new constant name wherever you need a new
constant.

In summary: var has global or function scope, and let and
const have global or block scope. Both var and let can be
declared without being initialized, while const must be
initialized during declaration. The var keyword can be reused
to redeclare a var variable, but let and const cannot. Finally,
const can be neither redeclared nor reassigned.

The Document Object Model
JavaScript’s design is very smart. Rather than creating yet
another scripting language (which would have still been a
pretty good improvement at the time), there was a vision to
build it around the already-existing HTML Document Object
Model. This breaks down the parts of an HTML document into
discrete objects, each with its own properties and methods and
each subject to JavaScript’s control.

JavaScript separates objects, properties, and methods by using
a period (one good reason why + is the string concatenation
operator in JavaScript, rather than the period). For example,
let’s consider a business card as an object we’ll call card. This
object contains properties such as a name, address, phone
number, and so on. In the syntax of JavaScript, these
properties would look like this:

card.name

card.phone

card.address

Its methods are functions that retrieve, change, and otherwise
act on the properties. For instance, to invoke a method that
displays the properties of the object card, you might use
syntax such as this:

card.display()

Have a look at some of the earlier examples in this chapter and
notice where the statement console.log is used. Now that
you understand how JavaScript is based around objects, you
will see that log is actually a method of the console object.

Within JavaScript, there is a hierarchy of parent and child
objects, known as the Document Object Model or DOM (see
Figure 13-3).

Figure 13-3. Example of DOM object hierarchy

The figure uses HTML tags you are already familiar with to
illustrate the parent/child relationship between the various
objects in a document. The last row shows object content
"Text..." and "Heading...", and object properties href,
src, and action. For example, a URL within a link is part of
the body of an HTML document. In JavaScript, it is referenced
like this:

url = document.links.linkname.href

Notice how this follows the central column down. The first
part, document, refers to the <html> and <body> tags in the
figure; links.linkname refers to the <a> tag, and href to the
href attribute.

Let’s turn this into some HTML and a script to read a link’s
properties. Type Example 13-6 and save it as linktest.html;
then call it up in your browser.

Example 13-6. Reading a link URL with JavaScript

<html>

 <head>

 <title>Link Test</title>

 </head>

 <body>

 Click me

 <script>

 url = document.links.mylink.href

 console.log('The URL is ' + url)

 </script>

 </body>

</html>

If you wish, just for the purposes of testing this (and other
examples), you could also omit everything outside of the
<script> and </script> tags. The output from this example
in the browser console is:

The URL is http://mysite.com/

Notice how the code follows the document tree down from
document to links to mylink (the id given to the link) to
href (the URL destination value).

A short form that works equally well starts with the value in
the id attribute: mylink.href. So, you can replace this:

url = document.links.mylink.href

with this:

url = mylink.href

Another Use for the $ Symbol
As mentioned earlier, the $ symbol is allowed in JavaScript
variable and function names. Because of this, you may
sometimes encounter strange-looking code like this:

url = $('mylink').href

Some enterprising programmers have decided that the
getElementById function is so prevalent in JavaScript that
they have written a function to replace it called $, like in
jQuery (although jQuery uses the $ for much more than just
getting an element by its ID).

Using the DOM
The links object is actually an array of URLs, so the mylink
URL in Example 13-6 can also be safely referred to in all
browsers in the following way (because it’s the first, and only,
link):

url = document.links[0].href

If you want to know how many links are in an entire
document, you can query the length property of the links
object, like this:

numlinks = document.links.length

You can extract and display all links in a document, like this:

for (j=0 ; j < document.links.length ; ++j)

 console.log(document.links[j].href)

The length of something is a property of every array, and
many objects as well. For example, the number of items in
your browser’s web history can be queried like this:

console.log(history.length)

To stop websites from snooping on your browsing history, the
history object stores only the number of sites in the array:
you cannot read the full history; you can modify only the
current entry with history.replaceState or add a new entry
with history.pushState.

You can also replace the current page with one from the
history, if you know what position it has within the history.
This can be very useful for cases in which you know that
certain pages in the history came from your site, or you simply
wish to send the browser back one or more pages, which you
do with the go method of the history object. For example, to
send the browser back three pages, issue the command:

history.go(-3)

You can also use the following methods to move back or
forward a page at a time:

history.back()

history.forward()

Similarly, you can replace the currently loaded URL with one
of your choosing, like this:

document.location.href = 'http://google.com'

Of course, there’s a whole lot more to the DOM than reading
and modifying links. As you progress through the following
chapters on JavaScript, you’ll become quite familiar with the
DOM and how to access it.

In Chapter 14 we’ll continue our exploration by looking at
how to control program flow and write expressions, but first
let’s repeat what you’ve learned by answering the following
questions.

Questions
1. Which tags do you use to enclose JavaScript code?

2. How can you include JavaScript code from another
source in your documents?

3. Which JavaScript function is the equivalent of echo
or print used in PHP for quick output of values or
expressions?

4. How can you create a comment in JavaScript?

5. What is the JavaScript string concatenation operator?

6. Which keyword can you use within a JavaScript
function to define a variable that has local scope?

7. Give two cross-browser methods to display the URL
assigned to the link with an id of thislink.

8. Which two JavaScript commands will make the
browser load the previous page in its history array?

9. What JavaScript command would you use to replace
the current document with the main page at the
oreilly.com website?

See “Chapter 13 Answers” in the Appendix A for the answers
to these questions.

Chapter 14. Expressions
and Control Flow in
JavaScript

In Chapter 13, I introduced the basics of JavaScript and the
DOM. Now it’s time to look at how to construct complex
expressions in JavaScript and how to control the program flow
of your scripts by using conditional statements.

Expressions
JavaScript expressions are very similar to those in PHP. As
you learned in Chapter 4, an expression is a combination of
values, variables, operators, and functions that results in a
value.

Example 14-1 shows some simple expressions. For each line,
it prints out a letter between a and d, followed by a colon and
the result of the expressions.

Example 14-1. Four simple Boolean expressions

<script>

 console.log("a: " + (42 > 3))

 console.log("b: " + (91 < 4))

 console.log("c: " + (8 === 2))

 console.log("d: " + (4 < 17))

</script>

The output from this code is:

a: true

b: false

c: false

d: true

Notice that both expressions a: and d: evaluate to true, but
b: and c: evaluate to false. Unlike PHP (which would print
the number 1 and nothing, respectively), the actual strings
true and false are displayed.

In JavaScript, when you are checking whether a value is true
or false, all values evaluate to true except the following,
which evaluate to false:

The string false itself

0

–0

The empty string

null

undefined

NaN (Not a Number, a computer engineering concept
for the result of an illegal floating-point operation
such as division by zero)

Note that I am referring to true and false in lowercase. This
is because, unlike in PHP, in JavaScript these values must be
lowercase. Therefore, only the first of the two following if
statements will display, printing the lowercase word true,
because the second will cause a TRUE is not defined error:

const foo = true

if (foo === true) console.log('foo is true') // True

if (foo === TRUE) console.log('foo is TRUE') // Will cause an

error

NOTE
Remember that any code snippets you wish to type and try for yourself
in an HTML file need to be enclosed within <script> and </script>
tags.

Literals and Variables
The simplest form of an expression is a literal, which means
something that evaluates to itself, such as the number 22 or the
string "Press Enter". An expression could also be a variable,
which evaluates to the value assigned to it. They are both
types of expressions, because they return a value.

Example 14-2 shows three different literals and two variables,
all of which return values, albeit of different types.

Example 14-2. Five types of literals

<script>

 const myname = "Peter"

 const myage = 24

 console.log("a: " + 42) // Numeric literal

 console.log("b: " + "Hi") // String literal

 console.log("c: " + true) // Boolean literal

 console.log("d: " + myname) // String variable

 console.log("e: " + myage) // Numeric variable

</script>

And, as you’d expect, you see a return value from all of these
in the following output:

a: 42

b: Hi

c: true

d: Peter

e: 24

Operators let you create more complex expressions that
evaluate to useful results. In contrast with an expression, a
statement is code that does not evaluate to a value. Most
control flow constructs in JavaScript are statements.

Example 14-3 shows one of each. The first assigns the result
of the expression 366 - day_number to the variable
days_to_new_year, and the second outputs a friendly
message only if the expression days_to_new_year < 30
evaluates to true.

Example 14-3. Two simple JavaScript statements

<script>

 const day_number = 127 // For example

 const days_to_new_year = 366 - day_number

 if (days_to_new_year < 30) console.log("It's nearly New Year")

 else console.log("A long time to go")

</script>

Operators
JavaScript offers a lot of powerful operators, ranging from
arithmetic, string, and logical operators to assignment,
comparison, and more (see Table 14-1).

Table 14-1. JavaScript operator types

Operator Description Example

Arithmetic Basic mathematics a + b

Assignment Assign values a = b + 23

Bitwise Manipulate bits
within bytes

12 ^ 9

Comparison Compare two
values

a < b

Increment/decrement Add or subtract
one

a++ / b--

Logical Boolean a && b

String Concatenation a + 'string'

Each operator takes a different number of operands:

Unary operators, such as incrementing (a++) or
negation (-a), take a single operand.

Binary operators, which represent the bulk of
JavaScript operators—including addition, subtraction,
multiplication, and division—take two operands.

The one ternary operator, which takes the form ? x :
y, requires three operands. It’s a terse single-line if
statement that chooses between two expressions
depending on a third one.

Operator Precedence
Like PHP, JavaScript utilizes operator precedence, in which
some operators in an expression are processed before others
and are therefore evaluated first. Table 14-2 lists JavaScript’s
operators and their precedences. Check the MDN page on
operator precedence for a detailed description.

https://oreil.ly/FsqL_

Table 14-2. Precedence of JavaScript operators (high
to low)

Operator(s) Type(s)

() [] . Parentheses, call, and member

++ -- Increment/decrement

+ - ~ ! Unary, bitwise, and logical

* / % Arithmetic

+ - Arithmetic and string

<< >> >>> Bitwise

< > <= >= Comparison

== != === !== Comparison

& ^ | Bitwise

&& Logical

|| Logical

? : Ternary

= += -= *= /= %= Assignment

<<= >>= >>>= &= ^= |= Assignment

, Separator

Associativity
Most JavaScript operators are processed in order from left to
right in an equation. But some operators require processing

from right to left instead. The direction of processing is called
the operator’s associativity.

This associativity becomes important where you do not
explicitly force precedence (which you should always do, by
the way, because it makes code more readable and less error
prone). For example, look at the following assignment
operators, by which three variables are all set to the value 0:

level = score = time = 0

This multiple assignment is possible only because the
rightmost part of the expression is evaluated first and then
processing continues in a right-to-left direction. Table 14-3
lists the JavaScript operators and their associativity.

Table 14-3. Operators and associativity

Operator Description Associativity

++ -- Increment and
decrement

None

new Create a new object Right

+ - ~ ! Unary and bitwise Right

?: Ternary Right

= *= /= %= += -= Assignment Right

<<= >>= >>>= &= ^=

|=
Assignment Right

, Separator Left

+ - * / % Arithmetic Left

<< >> >>> Bitwise Left

< <= > >= == != ===

!==
Arithmetic Left

Relational Operators
Relational operators test two operands and return a Boolean
result of either true or false. There are three types of
relational operators: equality, comparison, and logical.

Equality operators

The equality operator is == and the strict equality operator
(sometimes called identity operator) is === (neither should be
confused with the = assignment operator). Similar to PHP,
you’re encouraged to always use the strict equality operators
=== and !== as they are more safe and only very rarely use ==

and !=. In Example 14-4, the first statement assigns a value,
and the second tests it for equality. As it stands, nothing will
be printed out, because month is assigned the string value
July, and therefore the check for it having a value of October
will fail.

Example 14-4. Assigning a value and testing for equality

<script>

 const month = "July"

 if (month === "October") console.log("It's the Fall")

</script>

If the non-strict equality operator == is used and if the two
operands of the expression are of different types, JavaScript
will convert them to whatever type makes best sense to it, and
this can result in an unexpected behavior. For example, any
strings composed entirely of numbers will be converted to
numbers whenever compared with a number. In Example 14-5,
a and b are two different values (one is a number, and the
other is a string, although an empty one), and we would
therefore normally expect neither of the if statements to
output a result.

Example 14-5. The equality and identity operators

<script>

 const a = 0

 const b = ""

 if (a == b) console.log("1")

 if (a === b) console.log("2")

</script>

However, if you run the example, you will see that it outputs
the number 1, which means that the first if statement
evaluated to true. This is because the string value of b was
temporarily converted to a number, and therefore both halves
of the equation had a numerical value of 0.

In contrast, the second if statement uses the identity operator,
three equals signs in a row, which prevents JavaScript from

automatically converting types. a and b are therefore found to
be different, so nothing is output.

To avoid unexpected behavior, you should always use the
strict equality (identity) operator.

Comparison operators
Using comparison operators, you can test for more than just
equality and inequality. JavaScript also gives you > (is greater
than), < (is less than), >= (is greater than or equal to), and <=
(is less than or equal to) to play with. Example 14-6 shows
these operators in use.

Example 14-6. The four comparison operators

<script>

 const a = 7

 const b = 11

 if (a > b) console.log("a is greater than b")

 if (a < b) console.log("a is less than b")

 if (a >= b) console.log("a is greater than or equal to b")

 if (a <= b) console.log("a is less than or equal to b")

</script>

In this example, where a is 7 and b is 11, the following is
output (because 7 is less than 11 and also less than or equal to
11):

a is less than b

a is less than or equal to b

Truthy and falsy values
A truthy value is a value that evaluates to true after casting it
to Boolean, and vice versa, a falsy value is a value that
evaluates to false after casting it to Boolean.

Some truthy values, for example:

true

Any number except 0, for example 303

A nonempty string like "hello"

An array like [1, 2, 3]

And even an empty array like []

And some falsy values, for example:

false

null

undefined

Number 0

Empty string ""

The following code will take the truthy values from the
preceding list and typecast them to Boolean, except the first
one which is already a Boolean, and print the result:

console.log(

 true, // true

 Boolean(303), // true

 Boolean("hello"), // true

 Boolean([1, 2, 3]), // true

 Boolean([]), // true

 Boolean('hello') // true

)

And the same for the falsy values:

console.log(

 false, // false

 Boolean(null), // false

 Boolean(undefined), // false

 Boolean(0), // false

 Boolean("") // false

)

Logical operators
Logical operators produce truthy or falsy results and are also
known as Boolean operators. JavaScript has three of them (see

Table 14-4).

Table 14-4. JavaScript’s logical operators

Logical operator Description

x && y (and) y if x is truthy, otherwise x

x || y (or) x if x is truthy, otherwise y

!x (not) true if x is falsy, otherwise false

You can see how these can be used in Example 14-7, which
outputs 0, 1, and true.

Example 14-7. The logical operators in use

<script>

 const a = 1

 const b = 0

 console.log(a && b)

 console.log(a || b)

 console.log(!b)

</script>

The && statement requires both operands to be true to return a
value of true, the || statement will be true if either value is
true, and the third statement performs a NOT on the value of b,
turning it from 0 into a value of true.

Both the || and && operators can cause unexpected problems,
because the second operand will not be evaluated if the first is
evaluated as true in case of ||, or as false in case of
&&. This is a feature called short-circuit evaluation. In
Example 14-8, the getnext function will never be called if
finished has a value of 1 (these are just examples, and the
action of getnext is irrelevant to this explanation—just think
of it as a function that does something when called).

Example 14-8. A statement using the || operator

<script>

 if (finished === 1 || getnext() === 1) done = 1

</script>

If you need getnext to be called at each if statement, you
should rewrite the code as shown in Example 14-9.

Example 14-9. The if...or statement modified to ensure
calling of getnext

<script>

 gn = getnext()

 if (finished === 1 || gn === 1) done = 1;

</script>

In this case, the code in the function getnext will be executed
and its return value stored in gn before the if statement.

Table 14-5 shows all the possible variations of using the
logical operators. You should also note that !true equals
false and !false equals true.

Using onerror
Using either the onerror event or a combination of the try
and catch keywords, you can catch JavaScript errors and deal

Table 14-5. All possible logical expressions

Inputs Operators and results

a b && ||

true true true true

true false false true

false true false true

false false false false

with them yourself.

Events are actions that can be detected by JavaScript. Every
element on a web page has certain events that can trigger
JavaScript functions. For example, the click event
(sometimes rather incorrectly called the onclick event, as the
on prefix is used only for event handler property names) of a
button element can be set to call a function and make it run
whenever a user clicks the button.

Example 14-10 illustrates how to use the onerror event.

Example 14-10. A script employing the onerror event

<script>

 onerror = errorHandler

 console.lol("Welcome to this website") // Deliberate error

 function errorHandler(message, url, line)

 {

 out = "Sorry, an error was encountered.\n\n";

 out += "Error: " + message + "\n";

 out += "URL: " + url + "\n";

 out += "Line: " + line + "\n\n";

 out += "Click OK to continue.\n\n";

 alert(out);

 return true;

 }

</script>

The first line of this script tells the error event to use the new
errorHandler function from now on. This function takes
three parameters—a message, a url, and a line number—so
it’s a simple matter to display all these in an alert pop-up.

Then, to test the new function, we deliberately place a syntax
error in the code with a call to console.lol instead of
console.log (the final g is replaced with l). Figure 14-1
shows the result of running this script in a browser. Using
onerror this way can also be quite useful during debugging.

Figure 14-1. Using the onerror event with an alert method pop-up

Using try…catch
The try and catch keywords are more standard and more
flexible than the onerror technique shown in “Using onerror”.
These keywords let you trap errors for a selected section of
code, rather than all scripts in a document. However, they do
not catch syntax errors, for which you need onerror.

The try...catch construct is supported by all major
browsers and is handy when you want to catch a certain
condition that you are aware could occur in a specific part of
your code.

When working with elements, you can use try and catch to
do something else if the element is not available. Example 14-
11 shows how.

Example 14-11. Trapping an error with try and catch

<script>

 try {

 document.getElementById('el').innerHTML = '...';

 }

 catch(err) {

 alert("Oh no! There's no element with ID 'el'!")

 }

</script>

Another keyword associated with try and catch called
finally is always executed, regardless of whether an error
occurs in the try clause. To use it, for example to clean up
some resources, just add something like the following
statements after a catch statement:

finally {

 alert("The 'try' clause was encountered")

}

Conditionals
Conditionals alter program flow. They enable you to ask
questions about certain things and respond to the answers you
get in different ways. There are three types of nonlooping
conditionals: the if statement, the switch statement, and the ?
operator.

The if Statement
Several examples in this chapter have already used if
statements. The code within such a statement is executed only
if the given expression evaluates to true. Multiline if
statements require curly braces around them, but as in PHP,
you can omit the braces for single statements, although it’s
often a good idea to use them anyway, especially when writing
code in which the number of actions within an if statement
might change as development proceeds. Therefore, the
following statements are valid:

if (a > 100) {

 b = 2

 console.log("a is greater than 100")

}

if (b === 10) console.log("b is equal to 10")

The else Statement
When a condition has not been met, you can execute an
alternative by using an else statement, like this:

if (a > 100) {

 console.log("a is greater than 100")

}

else {

 console.log("a is less than or equal to 100")

}

Unlike PHP, JavaScript has no elseif statement, but that’s not
a problem because you can use an else followed by another
if to form the equivalent of an elseif statement, like this:

if (a > 100) {

 console.log("a is greater than 100")

}

else if (a < 100) {

 console.log("a is less than 100")

}

else {

 console.log("a is equal to 100")

}

As you can see, you can use another else after the new if,
which could equally be followed by another if statement, and
so on. Although I have shown braces on the statements,
because each is a single line, the previous example could be
written:

if (a > 100) console.log("a is greater than 100")

else if (a < 100) console.log("a is less than 100")

else console.log("a is equal to 100")

The switch Statement

The switch statement is useful when one variable or the result
of an expression can have multiple values and you want to
perform a different function for each value.

For example, the following code takes the PHP menu system
we put together in Chapter 4 and converts it to JavaScript. It
works by passing a single string to the main menu code
according to what the user requests. Let’s say the options are
Home, About, News, Login, and Links, and we set the variable
page to one of these according to the user’s input.

The code for this written using if...else if... will look
like Example 14-12.

Example 14-12. A multiline if...else if... statement

<script>

 if (page === "Home") console.log("You selected Home")

 else if (page === "About") console.log("You selected About")

 else if (page === "News") console.log("You selected News")

 else if (page === "Login") console.log("You selected Login")

 else if (page === "Links") console.log("You selected Links")

</script>

But using a switch construct, the code could look like
Example 14-13.

Example 14-13. A switch construct

<script>

 switch (page) {

 case "Home":

 console.log("You selected Home")

 break

 case "About":

 console.log("You selected About")

 break

 case "News":

 console.log("You selected News")

 break

 case "Login":

 console.log("You selected Login")

 break

 case "Links":

 console.log("You selected Links")

 break

 }

</script>

The variable page is mentioned only once at the start of the
switch statement. Thereafter, the case command checks for
matches. When one occurs, the matching conditional statement
is executed. Of course, a real program would have code here to
display or jump to a page, rather than simply telling the user
what was selected.

NOTE
You can also supply multiple cases for a single action; this is called
fall-through cases. For example:

switch (heroName) {

 case "Superman":

 case "Batman":

 case "Wonder Woman":

 console.log("Justice League")

 break

 case "Iron Man":

 case "Captain America":

 case "Spiderman":

 console.log("The Avengers")

 break

}

Breaking out

As you can see in Example 14-13, just as with PHP, the break
command allows your code to break out of the switch
statement once a condition has been satisfied. Remember to
include the break unless you want to continue executing the
statements under the next case.

Default action
When no condition is satisfied, you can specify a default
action for a switch statement by using the default keyword.
Example 14-14 shows a code snippet that could be inserted
into Example 14-13.

Example 14-14. A default statement to add to Example 14-13

default:

 console.log("Unrecognized selection")

 break

The ? Operator
The ternary operator, which looks like “condition ? ifTrue :
ifFalse” provides a shorthand alternative to if...else. With
it you can write an expression to evaluate and then follow it
with a ? symbol and the code to execute (ifTrue) if the
expression is true. After that, place a : and the code to
execute (ifFalse) if the expression evaluates to false.

Example 14-15 shows the ternary operator being used to print
out whether the variable a is less than or equal to 5 and prints
something either way.

Example 14-15. Using the ternary operator

<script>

 console.log(

 a <= 5

 ? "a is less than or equal to 5"

 : "a is greater than 5"

)

</script>

In this example, the statement has been broken into several
lines for clarity. However, if the operands are short, it’s
common to write ternaries on one line, such as:

size = a <= 5 ? "short" : "long"

Looping
Again, you will find many close similarities between
JavaScript and PHP when it comes to looping. Both languages
support while, do...while, and for loops.

while Loops
A JavaScript while loop first checks the value of an
expression and starts executing the statements within the loop
only if that expression is true. If it is false, the loop
terminates.

Upon completing an iteration of the loop, the expression is
again tested to see if it is true, and the process continues until
the expression evaluates to false or until execution is
otherwise halted. Example 14-16 shows such a loop.

Example 14-16. A while loop

<script>

 let counter = 0

 while (counter < 5)

 {

 console.log("Counter: " + counter)

 ++counter

 }

</script>

This script outputs this:

Counter: 0

Counter: 1

Counter: 2

Counter: 3

Counter: 4

WARNING
If the variable counter were not incremented within the loop, it is
quite possible that some browsers could become unresponsive due to a
never-ending loop, and the page might not even be easy to terminate
with Escape or the Stop loading page button. So, be careful with your
JavaScript loops.

do…while Loops
When you require a loop to iterate at least once before any
tests are made, use a do...while loop, which is similar to a

while loop, except that the test expression is checked only
after each iteration of the loop. So, to output the first seven
results in the 7 times table, you could use code like in
Example 14-17.

Example 14-17. A do...while loop

<script>

 let count = 1

 do {

 console.log(count + " times 7 is " + count * 7)

 } while (++count <= 7)

</script>

As you might expect, this loop outputs:

1 times 7 is 7

2 times 7 is 14

3 times 7 is 21

4 times 7 is 28

5 times 7 is 35

6 times 7 is 42

7 times 7 is 49

for Loops
A for loop gives you extensive control over the loop
conditions by providing three parameters:

An initialization expression

A condition expression

A modification expression

These are separated by semicolons, like this: for (expr1 ;
expr2 ; expr3). The initialization expression is executed at
the start of the first iteration of the loop. In the case of the code
for the multiplication table for 7, count would be initialized to
the value 1. Then, each time around the loop, the condition
expression (in this case, count <= 7) is tested, and the loop is
entered only if the condition is true. Finally, at the end of

each iteration, the modification expression is executed. In the
case of the multiplication table for 7, the variable count is
incremented. Example 14-18 shows what the code would look
like.

Example 14-18. Using a for loop

<script>

 for (count = 1 ; count <= 7 ; ++count) {

 console.log(count + "times 7 is " + count * 7);

 }

</script>

As in PHP, you can assign multiple variables in the first
parameter of a for loop by separating them with a comma,
like this:

for (i = 1, j = 1 ; i < 10 ; i++)

Likewise, you can perform multiple modifications in the last
parameter, like this:

for (i = 1 ; i < 10 ; i++, --j)

Or you can do both at the same time:

for (i = 1, j = 1 ; i < 10 ; i++, --j)

A variant worth mentioning is the for...of loop. You can use
it to loop over values coming from iterable objects, for
example, arrays:

const array = [1, 2, 3]

for (let value of array) {

 console.log(value)

}

Breaking Out of a Loop
The break command, which you’ll recall is important inside a
switch statement, is also available within for loops. You

might need to use this, for example, when searching for a
match of some kind. Once the match is found, you know that
continuing to search will only waste time and make your
visitor wait. Example 14-19 shows how to use the break
command.

Example 14-19. Using the break command in a for loop

<script>

 const haystack = new Array()

 haystack[17] = "Needle"

 for (let j = 0 ; j < 20 ; ++j)

 {

 if (haystack[j] === "Needle")

 {

 console.log("- Found at location " + j)

 break

 }

 else console.log(j + ", ")

 }

</script>

This script outputs:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

- Found at location 17

The continue Statement
Sometimes you don’t want to entirely exit from a loop but
instead wish to skip the remaining statements just for this
iteration of the loop. In such cases, you can use the continue
command. Example 14-20 shows this in use.

Example 14-20. Using the continue command in a for loop

<script>

 const haystack = new Array()

 haystack[4] = "Needle"

 haystack[11] = "Needle"

 haystack[17] = "Needle"

 for (let j = 0 ; j < 20 ; ++j)

 {

 if (haystack[j] === "Needle")

 {

 console.log("- Found at location " + j)

 continue

 }

 console.log(j + ", ")

 }

</script>

Notice how the second console.log call does not have to be
enclosed in an else statement (as it did before), because the
continue command will skip it if a match has been found.
The output from this script is:

0, 1, 2, 3,

- Found at location 4

5, 6, 7, 8, 9, 10,

- Found at location 11

12, 13, 14, 15, 16,

- Found at location 17

18, 19,

Explicit Casting
Unlike PHP, JavaScript has no explicit casting of types such as
(int) or (float). Instead, when you need a value to be of a
certain type, use one of JavaScript’s built-in functions, shown
in Table 14-6.

Table 14-6. JavaScript’s type-changing
functions

Change to type Function to use

Int, Integer parseInt()

Bool, Boolean Boolean()

Float, Double, Real parseFloat()

String String()

Array split()

So, for example, to change a floating-point number to an
integer, you could use the following code (which displays the
value 3):

n = 3.1415927

i = parseInt(n, 10) // 10 is an optional radix, recommended to

always use it

console.log(i)

That’s it for control flow and expressions; you can use the
following questions to confirm your understanding.
Chapter 15 focuses on the use of functions, objects, and arrays
in JavaScript.

Questions
1. How are Boolean values handled differently by PHP

and JavaScript?

2. What characters are used to define a JavaScript
variable name?

3. What is the difference between unary, binary, and
ternary operators?

4. What is the best way to force your own operator
precedence?

5. When would you use the === (identity) operator?

6. What are the simplest two forms of expressions?

7. Name the three conditional statement types.

8. How do if and while statements interpret conditional
expressions of different data types?

9. When might you prefer a for loop over a while loop,
and vice versa?

10. How can you cast one type to another in JavaScript?

See “Chapter 14 Answers” in the Appendix A for the answers
to these questions.

Chapter 15. JavaScript
Functions, Objects, and
Arrays

Just like PHP, JavaScript offers access to functions and
objects. In JavaScript objects are the primary means for
accessing the Document Object Model (DOM), because—as
you’ve seen—every element of an HTML document is
available to be manipulated as an object.

The usage and syntax are also quite similar to those of PHP, so
you should feel right at home as I take you through using
functions and objects in JavaScript, as well as through an in-
depth exploration of array handling.

JavaScript Functions
In addition to having access to dozens of built-in functions (or
methods), such as log, which you have already seen being
used in console.log, you can easily create your own
functions. A relatively complex piece of code that is likely to
be reused is a candidate for a function.

Defining a Function
The general syntax for a function is:

function function_name([parameter [, ...]]) {

 statements

}

The first line of the syntax indicates:

A definition starts with the word function.

A name follows that must start with a letter or
underscore, followed by any number of letters, digits,
dollar signs, or underscores, the same rules as for any
other identifier.

The parentheses are required.

One or more parameters, separated by commas, are
optional (indicated by the square brackets, which are
not part of the function syntax).

Like all identifiers in JavaScript, function names are case-
sensitive, so all of the following strings refer to different
functions: getInput, GETINPUT, and getinput.

JavaScript has a general naming convention for functions: the
first letter of each word in a name is capitalized, except for the
very first letter, which is lowercase. Therefore, of the previous
examples, getInput would be the preferred name used by
most programmers. This convention is referred to as
camelCase, because the capitalized letters resemble a camel’s
humps (or sometimes called bumpyCaps or bumpyCase).

The opening curly brace starts the statements that will execute
when you call the function; a matching curly brace must close
it. These statements may include one or more return
statements, which force the function to cease execution and
return to the calling code. If a value is attached to the return
statement, the calling code can retrieve it. If a function does
not have a return statement it implicitly returns undefined.

The rest parameter

With the rest parameter syntax ...params, a function can
accept a virtually infinite number of parameters. Take the
example of a function called displayItems. Example 15-1
shows one way of writing it, using exactly 5 parameters.

Example 15-1. Defining a function

<script>

 displayItems("Dog", "Cat", "Pony", "Hamster", "Tortoise")

 function displayItems(v1, v2, v3, v4, v5)

 {

 console.log(v1)

 console.log(v2)

 console.log(v3)

 console.log(v4)

 console.log(v5)

 }

</script>

When you call up this script in your browser, it will display
the following in the browser console:

Dog

Cat

Pony

Hamster

Tortoise

All of this is fine, but what if you wanted to pass more than
five items to the function? Also, reusing the console.log call
multiple times instead of employing a loop is wasteful
programming. Luckily, the rest parameter syntax ...params,
gives you the flexibility to handle a variable number of
arguments. You can use any other name, for example ...args;
the leading dots ... are the important part of the syntax, not
the parameter name.

Inside the function, the rest parameter is available as an array
of values passed to the function as parameters when the
function is called. Example 15-2 shows how you can use it to
rewrite the previous example much more efficiently.

Example 15-2. Modifying the function to use the rest
parameter syntax

<script>

 let c = "Car"

 displayItems("Bananas", 32.3, c)

 function displayItems(...params)

 {

 for (j = 0 ; j < params.length ; ++j)

 console.log(params[j])

 }

</script>

Note the use of the length property, which you encountered in
Chapter 14. Also note that I reference the params array using
the variable j as an offset into it. And I chose to keep the
function short and sweet by not surrounding the contents of
the for loop in curly braces, as it contains only a single
statement. Remember that because the < operator is used, the
loop must stop when j is one less than length, not equal to
length.

Using this technique, you now have a function that can take as
many (or as few) arguments as you like and act on each
argument as you desire.

The arguments array

The arguments array is automatically available inside every
function and offers a similar way of working with function
parameters. Using the array, the displayItems function from
Example 15-2 can be written like this:

function displayItems()

{

 for (j = 0 ; j < arguments.length ; ++j)

 console.log(arguments[j])

}

However, the rest parameter syntax is strongly preferred over
the arguments array because the rest parameter is visible
when you look at the function parameters, so it’s clear that the
function accepts some parameters, unlike when you use the
arguments array.

Returning a Value

Functions are not used just to display things. In fact, they are
used mostly to perform calculations or data manipulations and
then return a result. The function fixNames in Example 15-3
uses the rest parameter syntax (discussed in “The rest
parameter”) to take a series of strings passed to it and return
them as a single string. The “fix” it performs is to convert
every character in the arguments to lowercase except for the
first character of each argument, which is set to a capital letter.

Example 15-3. Cleaning up a full name

<script>

 console.log(fixNames("the", "DALLAS", "CowBoys"))

 function fixNames(...names)

 {

 let s = ""

 for (j = 0 ; j < names.length ; ++j)

 s += names[j].charAt(0).toUpperCase() +

 names[j].substring(1).toLowerCase() + " "

 return s.substring(0, s.length-1)

 }

</script>

When called with the parameters the, DALLAS, and CowBoys,
for example, the function returns the string The Dallas
Cowboys. Let’s walk through the function.

It first initializes the temporary (and local) variable s to the
empty string. Then a for loop iterates through each of the
passed parameters, isolating the parameter’s first character
using the charAt method and converting it to uppercase with
the toUpperCase method. The various methods shown in this
example are all built into JavaScript and available by default.

Then the substring method is used to fetch the rest of each
string, which is converted to lowercase via the toLowerCase
method. A fuller version of the substring method here would
specify how many characters are part of the substring as a
second argument:

substring(1, (names[j].length) - 1)

In other words, this substring method says, “Start with the
character at position 1 (the second character) and return the
rest of the string (the length minus one).” As a nice touch,
though, the substring method assumes that you want the rest
of the string if you omit the second argument.

After the whole argument is converted to the desired case, a
space character is added to the end, and the result is appended
to the temporary variable s.

Finally, the substring method is used again to return the
contents of the variable s, except for the final space—which is
unwanted. We remove this by using substring to return the
string up to, but not including, the final character.

This example is particularly interesting in that it illustrates the
use of multiple properties and methods in a single expression,
for example:

names[j].substring(1).toLowerCase()

You have to interpret the statement by mentally dividing it into
parts at the periods. JavaScript evaluates these elements of the
statement from left to right:

1. Start with the rest parameter names representing an
array of fixNames arguments.

2. Extract element j from the array.

3. Invoke substring with a parameter of 1 to the
extracted element. This passes all but the first
character to the next section of the expression.

4. Apply the method toLowerCase to the string that has
been passed thus far.

This practice is often referred to as method chaining. So, for
example, if the string mixedCASE is passed to the example
expression, it will go through the following transformations:

mixedCASE

ixedCASE

ixedcase

In other words, names[j] produces “mixedCASE,” then
substring(1) takes “mixedCASE” and produces
“ixedCASE,” and finally toLowerCase() takes “ixedCASE”
and produces “ixedcase.”

One final reminder: the s variable created inside the function
is local and therefore cannot be accessed outside the function.
By returning s in the return statement, we made its value
available to the caller, which could store or use it any way it
wanted. But s itself disappears at the end of the function.
Although we could make a function operate on global
variables (and sometimes that’s necessary in legacy code for
example), it’s much better to just return the values you want to
preserve and let JavaScript clean up all the other variables
used by the function.

Returning an Array
In Example 15-3, the function returned only one parameter—
but what if you need to return multiple parameters? You can
do this by returning an array, as shown in Example 15-4.

Example 15-4. Returning an array of values

<script>

 words = fixNames("the", "DALLAS", "CowBoys")

 for (j = 0 ; j < words.length ; ++j)

 console.log(words[j])

 function fixNames(...names)

 {

 let s = []

 for (j = 0 ; j < names.length ; ++j)

 s[j] = names[j].charAt(0).toUpperCase() +

 names[j].substr(1).toLowerCase()

 return s

 }

</script>

Here the variable words is automatically defined as an array
and populated with the returned result of a call to the function
fixNames. Then a for loop iterates through the array and
displays each member. You can also use
console.log(words) here instead of the for loop to see the
full array.

As for the fixNames function, it’s almost identical to
Example 15-3, except that the variable s is now an array; after
each word has been processed, it is stored as an element of this
array, which is returned by the return statement.

This function enables the extraction of individual parameters
from its returned values, like the following (the output is
simply The Cowboys):

words = fixNames("the", "DALLAS", "CowBoys")

console.log(words[0] + " " + words[2])

JavaScript Objects
A JavaScript object is more complex than a variable, which
can contain only one value at a time. In contrast, objects can
contain multiple values and even functions. An object groups
data together with the functions needed to manipulate it.

The simplest object you can have in JavaScript is an empty
object with no values and no functions. This is how you can
create it:

const user = {}

console.log(typeof user) // displays "object"

Objects created this way are often used to emulate PHP’s
associative arrays that JavaScript doesn’t support natively,
something we’ll explore later in this chapter.

Declaring a Class
When writing a code that uses the object-oriented
programming approach, you need to design a composite of
data and code called a class. Classes should ideally be
modeled after real-world items, so you should create different
classes for items such as a user, an order, or a cart. Each new
object based on such class is called an instance (or
occurrence) of that class. As you’ve already seen, the data
associated with an object is called its properties, while the
functions it uses are called methods.

Let’s look at how to declare the class for an object called User
that will contain details about the current user. The class will
have three properties, a special method called a constructor
(I’ll show later how it’s invoked), and a method to display the
data, showUser. Example 15-5 shows the code declaring the
class and creating an instance with the new keyword.

Example 15-5. Declaring the User class, its properties and
methods, creating an instance

<script>

 class User {

 constructor(forename, username, timezone) {

 this.forename = forename

 this.username = username

 this.timezone = timezone

 }

 showUser() {

 console.log("Forename: " + this.forename)

 console.log("Username: " + this.username)

 console.log("Timezone: " + this.timezone)

 }

 }

</script>

Creating an Instance
When you want to work with an instance (or object) of a class,
you first need to create it. Here is the line with the new
keyword:

const user = new User("Fred", "fred303", "UTC")

Immediately after creating the instance, the constructor
method will be automatically called and the values Fred,
fred303, and UTC will be passed to it as the forename,
username, and timezone parameters. The constructor is then
used to initialize the object properties referencing an object
named this, which refers to the instance being created:

this.forename = forename

this.username = username

this.timezone = timezone

The created instance is then assigned to the user variable. The
class also contains the showUser method, which will show the
values of the object properties in your browser console when
called.

You can create multiple instances from the same class by using
the new keyword again, possibly passing different values to the
constructor, like this:

const details = new User("Waldo", "waldo2600", "UTC+2")

The naming convention I have used is to start the name of the
class itself with a capital letter (User), unlike the instance
name (user), which can be different than the class name (for
example, details), and keep all properties in lowercase and
to use at least one uppercase character in method names,
following the camelCase convention mentioned earlier in the
chapter.

Accessing Objects
To access an object, you can refer to its properties, as in the
following two unrelated example statements:

const name = user.forename

if (user.username === "admin") loginAsAdmin()

So, to access the showUser method of an object of class User,
you would use the following syntax, in which the object
user has already been created and populated with data:

user.showUser()

Assuming the data supplied earlier, this code would display:

Forename: Fred

Username: fred303

Timezone: UTC

Static Methods and Properties
When reading about PHP objects, you learned that classes can
have static properties and methods as well as properties and
methods associated with a particular instance of a class.
JavaScript also supports static properties and methods; these
are prefixed by the static keyword in the class declaration as
you can see in Example 15-6.

Example 15-6. Adding a static property and a static method to
the User class
<script>

 class User {

 constructor(forename, username, timezone) {

 this.forename = forename

 this.username = username

 this.timezone = timezone

 }

 static greeting = "Hello";

 showUser() {

 console.log("Forename: " + this.forename)

 console.log("Username: " + this.username)

 console.log("Timezone: " + this.timezone)

 }

 static greet(name) {

 console.log(this.greeting + " " + name)

 }

 }

</script>

These can be accessed without creating an instance, by
referencing the class:

console.log(User.greeting)

User.greet("Jack")

The Legacy Objects Simulated with Functions
A lot of existing code uses functions to simulate objects and
classes seen in the previous sections. I show you the following
forms mainly because you are certain to encounter them when
perusing other programmers’ code. When writing a new code,
it’s recommended to use the class syntax seen in Example 15-
5.

Example 15-7. Declaring the User class using functions

<script>

 function User(forename, username, timezone)

 {

 this.forename = forename

 this.username = username

 this.timezone = timezone

 this.showUser = function()

 {

 console.log("Forename: " + this.forename)

 console.log("Username: " + this.username)

 console.log("Timezone: " + this.timezone)

 }

 }

 const user = new User("Wolfgang", "w.a.mozart", "UTC+2")

 user.showUser()

</script>

Note that there are no class and constructor keywords, the
function name serves as the class name, and the User function
itself acts similarly to the constructor:

function User(forename, username, timezone)

The User function also emulates methods by storing functions
in properties:

this.showUser = function()

Some other existing code also refers to functions defined
outside the constructor when setting the method-properties, as
in Example 15-8. This approach shouldn’t be used for any new
code.

Example 15-8. Separately defining a class and method

<script>

 function showUser()

 {

 console.log("Forename: " + this.forename)

 console.log("Username: " + this.username)

 console.log("Timezone: " + this.timezone)

 }

 function User(forename, username, timezone)

 {

 this.forename = forename

 this.username = username

 this.timezone = timezone

 this.showUser = showUser

 }

</script>

JavaScript Arrays
Array handling in JavaScript is very similar to PHP, although
the syntax is a little different. Nevertheless, given all you have
already learned about arrays, this section should be relatively
straightforward.

Arrays
To create a new array, use the following bracket syntax:

arrayname = []

Or you can use the longer form:

arrayname = new Array()

Assigning element values
In PHP, you could add a new element to an array by simply
assigning it without specifying the element offset, like this:

$arrayname[] = "Element 1";

$arrayname[] = "Element 2";

But in JavaScript you use the push method to achieve the
same thing:

arrayname.push("Element 1")

arrayname.push("Element 2")

This allows you to keep adding items to an array without
having to keep track of the number of items. When you need
to know how many elements are in an array, you can use the
length property:

console.log(arrayname.length)

Alternatively, if you wish to keep track of the element
locations yourself and place them in specific locations, you
can use this syntax:

arrayname[0] = "Element 1"

arrayname[1] = "Element 2"

Example 15-9 shows a simple script that creates an array,
loads it with some values, and then displays them.

Example 15-9. Creating, building, and printing an array

<script>

 numbers = []

 numbers.push("One")

 numbers.push("Two")

 numbers.push("Three")

 for (j = 0 ; j < numbers.length ; ++j)

 console.log("Element " + j + " = " + numbers[j])

</script>

The output from this script is:

Element 0 = One

Element 1 = Two

Element 2 = Three

Assignment using the array keyword
You can also create an array together with some initial
elements, like this:

numbers = ["One", "Two", "Three"]

Nothing is stopping you from adding more elements afterward
as well.

You’ve now seen a couple of ways you can add items to an
array, and one way of referencing them. JavaScript offers
many more, which I’ll get to shortly—but first, we’ll look at
another type of array.

Associative Arrays
An associative array is one in which the elements are
referenced by name rather than by an integer offset. However,
JavaScript doesn’t support such things. Instead, we can
achieve a similar result by creating an object with properties
that will act the same way.

So, to create an “associative array,” define a block of elements
within curly braces. For each element, place the key on the left

and the contents on the right of a colon (:). Example 15-10
shows how you might create an “associative array” to hold the
contents of the “balls” section of an online sports equipment
retailer.

Example 15-10. Creating and displaying an associative array

<script>

 balls = {golf: "Golf balls, 6",

 tennis: "Tennis balls, 3",

 soccer: "Soccer ball, 1",

 ping: "Ping Pong balls, 1 doz"}

 for (const ball in balls)

 console.log(ball + " = " + balls[ball])

</script>

I’ve used “associative array” in quotes because we’re actually
creating an object, which you can verify with
console.log(typeof balls).

To verify that the object has been correctly created and
populated, I have used another kind of for loop using the in
keyword. This creates a new variable to use only within the
loop (ball, in this example) and iterates through all elements
of the object to the right of the in keyword (balls, in this
example). The loop acts on each element of balls, placing the
key value into ball.

Using this property name stored in ball, you can also get the
value of the current element of balls. The result of calling up
the example script in a browser is:

golf = Golf balls, 6

tennis = Tennis balls, 3

soccer = Soccer ball, 1

ping = Ping Pong balls, 1 doz

To get a specific element of an object, you can specify a key
explicitly (in this case, outputting the value Soccer ball, 1):

console.log(balls.soccer)

Or you can use the “array” syntax to access the property, like
this:

console.log(balls['soccer'])

Multidimensional Arrays
To create a multidimensional (or, more accurately, a nested)
array in JavaScript, just place arrays inside other arrays. For
example, to create an array to hold the details of a two-
dimensional checkerboard (8 × 8 squares), you could use the
code in Example 15-11.

Example 15-11. Creating a multidimensional numeric array

<script>

 checkerboard = [

 [' ', 'o', ' ', 'o', ' ', 'o', ' ', 'o'],

 ['o', ' ', 'o', ' ', 'o', ' ', 'o', ' '],

 [' ', 'o', ' ', 'o', ' ', 'o', ' ', 'o'],

 [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '],

 [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '],

 ['O', ' ', 'O', ' ', 'O', ' ', 'O', ' '],

 [' ', 'O', ' ', 'O', ' ', 'O', ' ', 'O'],

 ['O', ' ', 'O', ' ', 'O', ' ', 'O', ' ']

]

 let s = '';

 for (let j = 0 ; j < 8 ; ++j) {

 for (let k = 0 ; k < 8 ; ++k)

 s += checkerboard[j][k] + " "

 s += '\n'

 }

 console.log(s)

</script>

In this example, the lowercase letters represent black pieces,
and the uppercase white. A pair of nested for loops walks
through the array and builds a string that is then displayed in
the console.

The outer loop contains two statements, so curly braces
enclose them. The inner loop then processes each square in a

row, outputting the character at location [j][k], followed by a
space (to square up the printout). This loop contains a single
statement, so curly braces are not required to enclose it. The
result looks like this:

 o o o o

o o o o

 o o o o

O O O O

 O O O O

O O O O

You can also directly access any element within this array by
using square brackets:

console.log(checkerboard[7][2])

This statement outputs the uppercase letter O, the eighth
element down and the third along—remember that array
indexes start at 0, not 1.

Using Array Methods
Given the power of arrays, JavaScript comes ready-made with
a number of methods for manipulating them and their data.
These are almost exclusively used with arrow functions, which
will be explained later in this chapter, but we’ll use the regular
named functions in the following examples to help you better
understand the array methods. Here is a selection of the most
useful ones.

some and every
When you need to know whether at least one array element
matches a certain criterion, you can use the some function,
which will test all the elements and automatically stop and
return the required value as soon as one matches. When you
need to know whether all elements match, you can use

every. This saves you from having to write your own code to
perform such searches, like this:

function isBiggerThan10(element)

{

 return element > 10

}

result = [2, 5, 8, 1, 4].some(isBiggerThan10); // result will be

false

result = [12, 5, 8, 1, 4].some(isBiggerThan10); // result will

be true

result = [12, 5, 8, 1, 4].every(isBiggerThan10); // result will

be false

result = [12, 42, 2600].every(isBiggerThan10); // result will be

true

includes
If you want to know whether an array contains a value, use the
includes method:

result = [2, 5, 8, 1, 4].includes(7); // result will be false

result = [2, 5, 8, 1, 4].includes(8); // result will be true

result = ['Hello', 'Hi'].includes('Hi'); // result will be true

result = ['Hello', 'Hi'].includes('Bye'); // result will be

false

map
Sometimes, you would like to apply the result of calling a
function to all array values. JavaScript offers a map method
you can use to return the new array, like this:

function add10(element)

{

 return element + 10

}

result = [2, 5, 8, 1, 4].map(add10);

console.log(result) // result is [12, 15, 18, 11, 14]

filter

You can use the filter method to return a new array that will
contain only the elements which, when passed to the provided
function, returned true:

function isBiggerThan10(element)

{

 return element > 10

}

result = [12, 5, 18, 11, 4].filter(isBiggerThan10);

console.log(result) // result is [12, 18, 11]

indexOf
To find out where an element can be found in an array, you can
call the indexOf function on the array, which will return the
offset of the located element (starting from 0), or -1 if it is not
found. For example, the following gives offset the value 2:

animals = ['cat', 'dog', 'cow', 'horse', 'elephant']

offset = animals.indexOf('cow')

concat

The concat method concatenates two arrays or a series of
values within an array. For example, the following code
outputs Banana, Grape, Carrot, Cabbage:

fruit = ["Banana", "Grape"]

veg = ["Carrot", "Cabbage"]

console.log(fruit.concat(veg))

The same can be accomplished with the spread syntax using
... (not to be confused with the rest parameter syntax, which
is used only for function parameters), which, when followed
by an array name, will be replaced by all array values, as if
they were directly written there. The following code outputs
the same array as the previous example:

fruit = ["Banana", "Grape"]

veg = ["Carrot", "Cabbage"]

console.log([...fruit, ...veg])

When using concat, you also can specify multiple arrays as
arguments, in which case concat adds all their elements in the
order that the arrays are specified.

Here’s another way to use concat. This time, plain values are
concatenated with the array pets, which outputs Cat, Dog,
Fish, Rabbit, Hamster:

pets = ["Cat", "Dog", "Fish"]

more_pets = pets.concat("Rabbit", "Hamster")

console.log(more_pets)

forEach

The forEach method in JavaScript is another way of
achieving functionality similar to the PHP foreach keyword.
To use it, you pass it the name of a function, which will be
called for each element within the array. Example 15-12 shows
how.

Example 15-12. Using the forEach method

<script>

 pets = ["Cat", "Dog", "Rabbit", "Hamster"]

 pets.forEach(output)

 function output(element, index)

 {

 console.log("Element at index " + index + " has the value "

+ element)

 }

</script>

In this case, the function passed to forEach is called output.
It takes two parameters: the element and its index. The
function may also take a third parameter, array, which
contains the array forEach was called upon, but I’ve omitted
it as it is unused in this example. All these parameters can be

used as required by your function. This example uses and
displays just the element and index values using the function
console.log.

Once an array has been populated, the method is called, like
this:

pets.forEach(output)

This is the output:

Element at index 0 has the value Cat

Element at index 1 has the value Dog

Element at index 2 has the value Rabbit

Element at index 3 has the value Hamster

join

With the join method, you can convert all the values in an
array to strings and then join them together into one large
string, placing an optional separator between them.
Example 15-13 shows three ways of using this method.

Example 15-13. Using the join method

<script>

 pets = ["Cat", "Dog", "Rabbit", "Hamster"]

 console.log(pets.join())

 console.log(pets.join(' '))

 console.log(pets.join(' : '))

</script>

Without a parameter, join uses a comma to separate the
elements; otherwise, the string passed to join is inserted
between each element. The output of Example 15-13 looks
like this:

Cat,Dog,Rabbit,Hamster

Cat Dog Rabbit Hamster

Cat : Dog : Rabbit : Hamster

push and pop

You already saw how the push method can be used to insert a
value into an array. The inverse method is pop. It removes the
last element from an array and returns it. Example 15-14
shows an example of its use.

Example 15-14. Using the push and pop methods

<script>

 sports = ["Football", "Tennis", "Baseball"]

 console.log("Start = " + sports)

 sports.push("Hockey")

 console.log("After Push = " + sports)

 removed = sports.pop()

 console.log("After Pop = " + sports)

 console.log("Removed = " + removed)

 removed = sports.pop()

 console.log("After Pop = " + sports)

 console.log("Removed = " + removed)

</script>

The four main statements of this script are shown in bold type.
First, the script creates an array called sports with three
elements and then pushes a fourth element into the array. After
that, it pops that element back off, and then it pops once more.
In the process, the various current values are displayed via
console.log. The script outputs the following:

Start = Football,Tennis,Baseball

After Push = Football,Tennis,Baseball,Hockey

After Pop = Football,Tennis,Baseball

Removed = Hockey

After Pop = Football,Tennis

Removed = Baseball

The push and pop functions are useful in situations where you
need to divert from some activity to do another and then
return. For example, let’s suppose you want to put off some
activities until later, while you get on with something more

important now. This often happens in real life when we’re
going through “to-do” lists, so let’s emulate that in code, with
tasks number 2 and 5 in a list of six items being granted
priority status, as in Example 15-15.

Example 15-15. Using push and pop inside and outside of a
loop

<script>

 const numbers = []

 for (j = 1 ; j < 6 ; ++j) {

 if (j === 2 || j === 5) {

 console.log("Processing 'todo' #" + j)

 }

 else {

 console.log("Putting off 'todo' #" + j + " until later")

 numbers.push(j)

 }

 }

 console.log("Finished processing the priority tasks.")

 console.log("Commencing stored tasks, most recent first.")

 console.log("Now processing 'todo' #" + numbers.pop())

 console.log("Now processing 'todo' #" + numbers.pop())

 console.log("Now processing 'todo' #" + numbers.pop())

</script>

Of course, nothing is actually getting processed here, just text
being output to the browser, but you get the idea. The output
from this example is:

Putting off 'todo' #1 until later

Processing 'todo' #2

Putting off 'todo' #3 until later

Putting off 'todo' #4 until later

Processing 'todo' #5

Finished processing the priority tasks.

Commencing stored tasks, most recent first.

Now processing 'todo' #4

Now processing 'todo' #3

Now processing 'todo' #1

Using reverse

The reverse method simply reverses the order of all elements
in an array. Example 15-16 shows this in action.

Example 15-16. Using the reverse method

<script>

 sports = ["Football", "Tennis", "Baseball", "Hockey"]

 sports.reverse()

 console.log(sports)

</script>

The original array is modified, and the output from this script
is:

Hockey, Baseball, Tennis, Football

sort

With the sort method, you can place all the elements of an
array in alphabetical order, depending on the parameters used.
Example 15-17 shows four types of sort.

Example 15-17. Using the sort method

<script>

 // Alphabetical sort

 sports = ["Football", "Tennis", "Baseball", "Hockey"]

 sports.sort()

 console.log(sports)

 // Reverse alphabetical sort

 sports = ["Football", "Tennis", "Baseball", "Hockey"]

 sports.sort().reverse()

 console.log(sports)

</script>

The first of the two example sections uses the default sort
method to perform an alphabetical sort, while the second uses
the default sort and then applies the reverse method to get a
reverse alphabetical sort.

Anonymous Functions

Some functions do not need a name, because they’re used only
once, for example, and coming up with a name would be a
waste of time. A function without a name, called
an anonymous function, can be used, for example, as a
comparison function for sorting arrays with the sort method
you’ve already seen in Example 15-17. Let’s take that example
but sort the array using a numeric sort this time, which
requires an anonymous comparison function. The code is
in Example 15-18.

Example 15-18. Using the sort method with an anonymous
function
<script>

 // Ascending numeric sort

 numbers = [7, 23, 6, 74]

 numbers.sort(function(a,b){return a - b})

 console.log(numbers)

 // Descending numeric sort

 numbers = [7, 23, 6, 74]

 numbers.sort(function(a,b){return b - a})

 console.log(numbers)

</script>

In both cases, the numbers.sort call here uses a function to
compare the relationships between a and b. The function
doesn’t have a name, because it’s used only in the sort. You
have already seen the function named function used to create
an anonymous function; we used it to define a method in a
class (the showUser method).

Here, function creates an anonymous function meeting the
needs of the sort method. If the function returns a value
greater than zero, the sort assumes that b comes before a. If
the function returns a value less than zero, the sort assumes
that a comes before b. The sort runs this function across all the
values in the array to determine their order. (Of course, if a
and b have the same value, the function returns zero, and it
doesn’t matter which value is first.)

By manipulating the value returned (a - b in contrast to b -
a), the two sections of Example 15-18 choose between
an ascending numerical sort and a descending numerical sort.

Arrow Functions
The arrow function syntax is a simplified version of the
general anonymous function syntax you have just seen. The
syntax is very common because it’s short and concise. In the
following example, we’ll convert the general anonymous
function to use the arrow function syntax. The line with the
anonymous function in Example 15-18 looks like this:

numbers.sort(function(a,b){return a - b})

You can remove the function keyword as well as the return
keyword and remove the body braces, like this:

numbers.sort((a,b) => a - b)

If the arrow function would have exactly one parameter, you
could also omit the parameter parentheses, but that’s not the
case here; the function has two parameters, a and b.

And, believe it or not, this represents the end of your
introduction to JavaScript. You should now have a core
knowledge of the three main technologies covered in this
book. Chapter 16 will look at some advanced techniques used
across these technologies, such as pattern matching and input
validation. But before we continue, let’s try to answer the
following questions to repeat the main things you’ve learned
in this chapter.

Questions
1. Are JavaScript functions and variable names case-

sensitive or case-insensitive?

2. How can you write a function that accepts and
processes an arbitrary number of parameters?

3. Describe a way to return multiple values from a
function.

4. When you’re defining a class, what keyword do you
use to refer to the current object?

5. Do all the methods of a class have to be defined
within the class definition?

6. What keyword is used to create an object instance
from a class?

7. How can you create a multidimensional array?

8. What syntax is used to create an “associative array”?

9. Write a statement to sort an array of numbers in
descending numerical order.

See “Chapter 15 Answers” in the Appendix A for the answers
to these questions.

Chapter 16. JavaScript
and PHP Validation and
Error Handling

With your solid foundation in both PHP and JavaScript, it’s
time to bring these technologies together to create web forms
that are as user-friendly as possible.

We’ll be using PHP to create the forms and JavaScript to
perform client-side validation to ensure that the data is as
complete and correct as it can be before it is submitted. Final
validation of the input will then be done by PHP, which will, if
necessary, present the form again to the user for further
modification.

In the process, this chapter will cover validation and regular
expressions in both JavaScript and PHP.

Validating User Input with JavaScript
JavaScript validation should be considered assistance to your
users more than to your websites because, as I have stressed
many times, you cannot trust any data submitted to your
server, even if it has supposedly been validated with
JavaScript. Hackers can quite easily simulate your web forms
and submit any data of their choosing.

Another reason you cannot rely on JavaScript to perform all
your input validation is that some users disable JavaScript or
use browsers that don’t support it.

So, the best types of validation to do in JavaScript are
checking that fields have content if they are not to be left
empty, ensuring that email addresses conform to the proper

format, and ensuring that values entered are within expected
bounds.

The validate.html Document (Part 1)
To keep the code listing easier to follow, this example is split
into two parts: the main HTML and associated JavaScript, and
the JavaScript functions that get called by the main part. Let’s
begin with a general signup form, common on most sites that
offer user registration. The inputs requested will be forename,
surname, username, password, age, and email address.
Example 16-1 provides a good template for such a form,
which you can retrieve from the repo of examples on GitHub.
Ensure it is saved as validate.html.

Example 16-1. A form with JavaScript validation (part 1)

<!DOCTYPE html>

<html>

 <head>

 <title>An Example Form</title>

 <style>

 .signup {

 border: 1px solid #999999;

 font: normal 14px helvetica;

 color: #444444;

 background-color: #eeeeee;

 border-spacing: 5px;

 }

 .signup th, .signup td {

 padding: 2px;

 }

 </style>

 </head>

 <body>

 <form method="post" action="" id="form">

 <table class="signup">

 <th colspan="2" align="center">Signup Form</th>

 <tr><td>Forename</td>

 <td><input type="text" maxlength="32" name="forename"

required></td></tr>

 <tr><td>Surname</td>

 <td><input type="text" maxlength="32" name="surname"

required></td></tr>

 <tr><td>Username</td>

 <td><input type="text" maxlength="16" name="username"

required></td></tr>

 <tr><td>Password</td>

 <td><input type="password" name="password" required>

</td></tr>

https://github.com/RobinNixon/lpmj7

 <tr><td>Age</td>

 <td><input type="number" max="110" name="age" required>

</td></tr>

 <tr><td>Email</td>

 <td><input type="email" maxlength="64" name="email"

required></td></tr>

 <tr><td colspan="2" align="center"><input type="submit"

 value="Signup"></td></tr>

 </table>

 </form>

 <script>

 function validateFields(form)

 {

 const errors = []

 const elements = {}

 let error = ''

 for (let element of form.elements)

 elements[element.name] = element.value.trim()

 error = validateForename(elements.forename)

 if (error) errors.push({field: 'forename', message:

error})

 error = validateSurname(elements.surname)

 if (error) errors.push({field: 'surname', message:

error})

 error = validateUsername(elements.username)

 if (error) errors.push({field: 'username', message:

error})

 error = validatePassword(elements.password)

 if (error) errors.push({field: 'password', message:

error})

 error = validateAge(elements.age)

 if (error) errors.push({field: 'age', message: error})

 error = validateEmail(elements.email)

 if (error) errors.push({field: 'email', message: error})

 return errors

 }

 const validate = function(event)

 {

 const errors = validateFields(event.target)

 if (errors.length) {

 const alerts = []

 for (error of errors) {

 alerts.push(error.field + ": " + error.message)

 }

 alert(alerts.join("\n"))

 event.preventDefault()

 }

 }

 document.getElementById('form').addEventListener('submit',

validate)

 </script>

 </body>

</html>

As it stands, this form will display correctly but will not yet
have any JavaScript-based validation, because the main
validation functions have not been added. The HTML
attributes like required, type="number" and type="email"
will provide at least some built-in validation. Even so, save it
as validate.html, and when you call it up in your browser, it
will look like Figure 16-1.

Figure 16-1. The output from Example 16-1

Let’s look at how this document is made up. The first few lines
set up the document and use a little CSS to make the form look
a little less plain. The parts of the document related to
JavaScript come next and are shown in bold.

The first part of this example features the HTML for the form,
with each field and its name placed within its own row of a

table. This is pretty straightforward HTML: it uses correct
input types for the age and email fields and adds the required
attribute to provide some built-in validation.

Between the <script> and </script> tags lies a function
called validateFields that first removes all leading and
trailing spaces from all the submitted values by calling the
trim method, and it stores the result in the elements
“associative array” (in quotes because it’s actually an object).
Then it calls up six other functions to validate each of the
form’s input fields. We’ll get to these functions shortly. For
now I’ll just explain that they return either an empty string if a
field validates or an error message if it fails. If an error
message is returned, it is added to the errors array as an
object together with the input field name. The function then
returns the errors array.

The validateFields function is then called in an anonymous
function that, if any errors were returned, formats them as
"field name: error message", stores them in the alerts
array, and eventually uses the alert function to show the error
messages to the user, one per line. You could further enhance
the anonymous function to, for example, display the error
messages below the respective form fields; the val ida te
Fie lds function returns all the information you’d need.

The following line then attaches the anonymous function
stored in validate as an event handler (or listener) that’s
called when the form is submitted:

document.getElementById('form').addEventListener('submit',

validate)

The anonymous function receives a parameter I’ve called
event, which references the form being submitted in
event.target. If the validateFields function returned
some errors in the array, besides alerting the messages, we’ll

prevent the form values from being submitted to the server by
calling the following method on the event object:

event.preventDefault()

If this were omitted, the browser would display the error
messages, but then upon closing, the alert pop-up would still
submit the form, so the user would have no chance to correct
the form data.

As you can see, there’s no JavaScript used within the form’s
HTML. Browsers with JavaScript disabled or not available
will display the form just fine.

The validate.html Document (Part 2)
Now we come to Example 16-2, a set of six functions that do
the actual form-field validation. I suggest that you type all of
this second part and save it in the <script>...</script>
section of Example 16-1, which you have saved as
validate.html.

Example 16-2. A form with JavaScript validation (part 2)

function validateForename(field)

{

 return (field === "") ? "No Forename was entered." : ""

}

function validateSurname(field)

{

 return (field === "") ? "No Surname was entered." : ""

}

function validateUsername(field)

{

 if (field == "")

 return "No Username was entered."

 else if (field.length < 5)

 return "Usernames must be at least 5 characters."

 else if (/[^a-zA-Z0-9_-]/.test(field))

 return "Only a-z, A-Z, 0-9, - and _ allowed in Usernames."

 return ""

}

function validatePassword(field)

{

 if (field == "")

 return "No Password was entered."

 else if (field.length < 6)

 return "Passwords must be at least 6 characters."

 else if (!/[a-z]/.test(field) || !/[A-Z]/.test(field) ||

 !/[0-9]/.test(field))

 return "Passwords require one each of a-z, A-Z and 0-9."

 return ""

}

function validateAge(field)

{

 if (field == "" || isNaN(field))

 return "No Age was entered."

 else if (field < 18 || field > 110)

 return "Age must be between 18 and 110."

 return ""

}

function validateEmail(field)

{

 return (field === "") ? "No Email was entered." : ""

}

We’ll go through each of these functions in turn, starting with
validateForename, so you can see how validation works.

Validating the forename

validateForename is a short function that accepts the
parameter field, which is the value of the forename passed to
it by the validate function.

If this value is the empty string, an error message is returned;
otherwise, an empty string is returned to signify that no error
was encountered.

Remember that spaces are already trimmed in
validateFields so even if the user tried to submit a string
with leading or trailing spaces, they would be removed before
calling validateForename, and the value would be passed to
it as an empty string.

Basic check for an empty string is already done by the browser
as instructed by the required HTML attribute.

Validating the surname

The validateSurname function is almost identical to
validateForename in that an error is returned only if the
surname supplied was an empty string. I chose not to limit the
characters allowed in either of the name fields to allow for
possibilities such as non-English and accented characters.

Validating the username

The validateUsername function is a little more interesting,
because it has a more complicated job. It can allow through

only the characters a-z, A-Z, 0-9, _, and -, and it ensures that
usernames are at least five characters long.

The if...else statements commence by returning an error if
field has not been filled in. If it’s not the empty string but is
fewer than five characters in length, another error message is
returned. This also can be done by adding minlength="6"
attribute to the input’s HTML instead.

Then the JavaScript test method is called, passing a regular
expression (which matches any character that is not one of
those allowed) to be matched against field (see “Regular
Expressions”). If even one character that isn’t one of the
acceptable characters is encountered, the test function returns
true, and so validateUser returns an error string. A pattern
HTML attribute can be added to the input, which can do the
same check in pure HTML, but it’s error message may not be
clear to some users.

Validating the password

Similar techniques are used in the validatePassword
function. First the function checks whether field is empty,
and if it is, it returns an error. Next, an error message is
returned if the password is shorter than six characters.

One of the requirements we’re imposing on passwords is that
they must have at least one each of a lowercase, uppercase,
and numerical character, so the test function is called three
times, once for each of these cases. If any one of these calls
returns false, one of the requirements was not met, and so an
error message is returned. Otherwise, the empty string is
returned to signify that the password was OK.

The same HTML attributes (minlength, pattern) can also be
used in this case.

Validating the age

validateAge returns an error message if field is not a
number (determined by a call to the isNaN function) or if the
age entered is lower than 18 or greater than 110. Your
applications may well have different or no age requirements.
Again, upon successful validation, the empty string is
returned.

Entering numbers and the range is also enforced by the
browser itself using the type="number" and max="110"
HTML attributes. You could also add min="18" but you’d
need to explain the allowed range directly in the form, which I
have not done here for brevity; otherwise, users would be
wondering why they cannot enter numbers less than min. If
adding HTML attributes, make sure the range is the same as
the range checked in JavaScript, similar to other attributes like
minlength for example.

Validating the email
In the last example, the value is validated with
validateEmail. Validating email addresses can be a difficult
task: did you, for example, know that the plus sign (+) is a
valid character of the username part? Addresses like
foo+bar@example.com (and more) are valid email addresses,
and it’s not recommended you try to validate them with your
own code. We’ll check only for empty strings but leave the
address format check on the browser’s built-in validation of
the <input type="email"> field.

Figure 16-2 shows the result of the user clicking the Signup
button without having completed any fields.

Figure 16-2. JavaScript form validation in action

Using a separate JavaScript file
Of course, because they are generic in construction and could
apply to many types of validations you might require, these six
functions make ideal candidates for moving out into a separate
JavaScript file. You could name the file something like
validate_functions.js and include it right after the initial script
section in Example 16-1, using the following statement:

<script src="validate_functions.js"></script>

Regular Expressions
Let’s look a little more closely at the pattern matching we have
been doing. We’ve achieved it using regular expressions,
which are supported by both JavaScript and PHP. They make it
possible to construct powerful pattern-matching algorithms
within a single expression.

Matching Through Metacharacters
Regular expressions normally must be enclosed in slashes.
Within these slashes, certain characters have special meanings;

they are called metacharacters. For instance, an asterisk (*)
has a meaning similar to what you have seen if you’ve used a
shell or Windows command prompt (but not quite the same).
An asterisk means “The text you’re trying to match may have
any number of the preceding characters—or none at all.”

For instance, let’s say you’re looking for the name Le Guin
and know that someone might spell it with or without a space.
Because the text is laid out strangely (for instance, someone
may have inserted extra spaces to right-justify lines), you
could have to search for a line such as this:

The difficulty of classifying Le Guin's works

So you need to match LeGuin, as well as Le and Guin
separated by any number of spaces. The solution is to follow a
space with an asterisk:

/Le *Guin/

There’s a lot more than the name Le Guin in the line, but that’s
OK. As long as the regular expression matches some part of
the line, the test function returns a true value. What if it’s
important to make sure the line contains nothing but Le Guin?
I’ll show you how to ensure that later.

Suppose that you know there is always at least one space. In
that case, you could use the plus sign (+), because it requires at
least one of the preceding expressions to be present:

/Le +Guin/

Wildcard Matching
The dot (.) is particularly useful, because it can match
anything except a newline. Suppose you are looking for
HTML tags, something that generally shouldn’t be done with
regular expressions unless you want to do a quick and naive
“pseudo-parsing” of HTML. Or unless, of course, you want to

learn regular expressions, as HTML provides a lot of
opportunities to showcase the usage.

DO NOT PARSE HTML WITH REGULAR
EXPRESSIONS

You can almost always construct valid HTML that will defeat your
regular expression because regular expressions in general are not
sufficient to completely parse HTML. This answer to a question
posted on StackOverflow explains the details.

To parse HTML, you should use a full-featured parser like the one
available in the loadHTML method of PHP’s DOMDocument class.

HTML tags start with < and end with >. A simple way to find
them is shown here:

/<.*>/

The dot matches any character, and the * expands it to match
zero or more characters, so this is saying, “Match anything
that lies between < and >, even if there’s nothing.” You will
match <>, ,
, and so on. But if you don’t want to
match the empty case, <>, you should use + instead of *, like
this:

/<.+>/

The plus sign expands the dot to match one or more
characters, saying, “Match anything that lies between < and >
as long as there’s at least one character between them.” You
will match and , <h1> and </h1>, and tags with
attributes, such as:

Unfortunately, the plus sign keeps on matching the last > on
the line, so you might end up with this:

<h1>Introduction</h1>

https://oreil.ly/CmOe1

That’s a lot more than one tag! I’ll show a better solution later
in this section.

NOTE
If you use the dot on its own between the angle brackets, without
following it with either a + or *, then it matches a single character; you
will match and <i> but not or <textarea>.

If you want to match the dot character itself (.), you have to
escape it by placing a backslash (\) before it, because
otherwise it’s a metacharacter and matches anything. For
example, suppose you want to match the floating-point
number 5.0. The regular expression is:

/5\.0/

The backslash can escape any metacharacter, including
another backslash (in case you’re trying to match a backslash
in text). However, you’ll see later how backslashes sometimes
give the following character a special meaning, which can be a
bit confusing.

We just matched a floating-point number. But perhaps you
want to match 5. as well as 5.0, because both mean the same
thing as a floating-point number. You also want to match 5.00,
5.000, and so forth—any number of zeros is allowed. You can
do this by adding an asterisk, as you’ve seen:

/5\.0*/

Grouping Through Parentheses
Suppose you want to match powers of increments of units,
such as kilo, mega, giga, and tera. In other words, you want all
the following to match:

1,000

1,000,000

1,000,000,000

1,000,000,000,000

...

The plus sign works here, too, but you need to group the string
,000 so the plus sign matches the whole thing. The regular
expression is:

/1(,000)+ /

The parentheses mean “Treat this as a group when you apply
something such as a plus sign.” Strings like 1,00,000 and
1,000,00 won’t match because the text must have a 1
followed by one or more complete groups of a comma
followed by three zeros.

The space after the + character indicates that the match must
end when a space is encountered. Without it, 1,000,00 would
incorrectly match because only the first 1,000 would be taken
into account, and the remaining ,00 would be ignored.
Requiring a space afterward ensures that matching will
continue right through to the end of a number. If the number
can also be followed by a full stop (.), not just by a space, like
for example at the end of the sentence, you’d need to allow the
full stop to also end the search using character classes.

Character Classes
Sometimes you want to match something fuzzy but not so
broadly that you want to use a dot. Fuzziness is the great
strength of regular expressions: they allow you to be as precise
or vague as you want.

One of the key features supporting fuzzy matching is the pair
of square brackets, []. It matches a single character, like a dot,
but inside the brackets you put a list of things that can match.
If any of those characters appears, the text matches. For
instance, if you wanted to match both the American spelling
gray and the British spelling grey, you could specify:

/gr[ae]y/

After the gr in the text you’re matching, there can be either an
a or an e. But there must be only one of them: whatever you
put inside the brackets matches exactly one character. The
group of characters inside the brackets is called a character
class.

Indicating a Range
Inside the brackets, you can use a hyphen (-) to indicate a
range. One very common task is matching a single digit,
which you can do with a range, as follows:

/[0-9]/

Digits are such a common item in regular expressions that a
single character is provided to represent them: \d. You can use
it in place of the bracketed regular expression to match a digit:

/\d/

Negation
One other important feature of the square brackets is negation
of a character class. You can turn the whole character class on
its head by placing a caret (^) after the opening bracket. Here
it means “Match any characters except the following.” So let’s
say you want to find instances of Yahoo that lack the following
exclamation point. (The name of the company officially
contains an exclamation point!) You could do it like this:

/Yahoo[^!]/

The character class consists of a single character—an
exclamation point—but it is inverted by the preceding ^. This
is actually not a great solution to the problem—for instance, it
fails if Yahoo is at the end of the line, because then it’s not

followed by anything, whereas the brackets must match a
character. A better solution involves negative lookahead
(matching something that is not followed by anything else),
but that’s beyond the scope of this book, so please refer to the
Regular Expressions website, which shows how to apply
negative lookahead for a regex in any language.

Some More Complicated Examples
With an understanding of character classes and negation,
you’re ready to see a better solution to the problem of
matching an HTML tag. This solution avoids going past the
end of a single tag but still matches tags such as and
 as well as tags with attributes such as:

Here is one solution:

/<[^>]+>/

That regular expression may look like a cat just sauntered
across the keyboard, but it is perfectly valid and very useful.
Let’s break it apart. Figure 16-3 shows the various elements,
which I’ll describe one by one.

Figure 16-3. Breakdown of a typical regular expression

The elements are:

/

Opening slash that indicates this is a regular expression.

<

https://oreil.ly/ft2GB

Opening bracket of an HTML tag. This is matched exactly;
it’s not a metacharacter.

[^>]

Character class. The embedded ^> means “Match anything
except a closing angle bracket.”

+

Allows any number of characters to match the previous
[^>], as long as there is at least one of them.

>

Closing bracket of an HTML tag. This is matched exactly.

/

Closing slash that indicates the end of the regular
expression.

NOTE
Another solution to the problem of matching HTML tags is to use a
nongreedy operation. By default, pattern matching is greedy, returning
the longest match possible. Nongreedy (or lazy) matching finds the
shortest possible match. Its use is beyond the scope of this book, but
there are more details on the JavaScript.info website.

We’ll look now at one of the expressions from Example 16-1,
where the val ida te Use rna me function is used:

/[^a-zA-Z0-9_-]/

Figure 16-4 shows the various elements.

https://oreil.ly/8IOYF

Figure 16-4. Breakdown of the validateUsername regular expression

Let’s look at these elements in detail:

/

Opening slash that indicates this is a regular expression.

[

Opening bracket that starts a character class.

^

Negation character: inverts everything else between the

brackets.

a-z

Represents any lowercase letter.

A-Z

Represents any uppercase letter.

0-9

Represents any digit.

_

An underscore.

-

A dash.

]

Closing bracket that ends a character class.

/

Closing slash that indicates the end of the regular

expression.

Two other important metacharacters “anchor” a regular
expression by requiring that it appear in a particular place. If a
caret (^) appears at the beginning of the regular expression, the
expression has to appear at the beginning of a line of text;
otherwise, it doesn’t match. Similarly, if a dollar sign ($)
appears at the end of the regular expression, the expression has
to appear at the end of a line of text.

NOTE
It may be somewhat confusing that ^ can mean “negate the character
class” inside square brackets and “match the beginning of the line” if
it’s at the beginning of the regular expression. Unfortunately, the same
character is used for two different purposes, so take care when using it.

We’ll finish our exploration of regular expression basics by
answering a question raised earlier: suppose you want to make
sure there is nothing extra on a line besides the regular
expression? What if you want a line that has “Le Guin” and
nothing else? We can do that by amending the earlier regular
expression to anchor the two ends:

/^Le *Guin$/

Summary of Metacharacters
Table 16-1 shows the metacharacters available in regular
expressions.

Table 16-1. Regular expression metacharacters

Metacharacters Description

/ Begins and ends the regular expression

. Matches any single character except
the newline

element* Matches element zero or more times

element+ Matches element one or more times

element? Matches element zero or one times

[characters] Matches a character out of those
contained within the brackets

[^characters] Matches a single character that is not
contained within the brackets

(regex) Treats the regex as a group for counting
or a following *, +, or ?

left|right Matches either left or right

[l-r] Matches a range of characters between
l and r

^ Requires match to be at the string’s
start

$ Requires match to be at the string’s end

\b Matches a word boundary

\B Matches where there is not a word
boundary

Metacharacters Description

\d Matches a single digit

\D Matches a single nondigit

\n Matches a newline character

\s Matches a whitespace character

\S Matches a nonwhitespace character

\t Matches a tab character

\w Matches a word character (a-z, A-Z, 0-9,
and _)

\W Matches a nonword character (anything
but a-z, A-Z, 0-9, and _)

\x Matches x (useful if x is a
metacharacter, but you really want x)

{n} Matches exactly n times

{n,} Matches n times or more

{min,max} Matches at least min and at most max
times

Provided with this table, and looking again at the expression
/[^a-zA-Z0-9_]/, you can see that it could easily be
shortened to /[^\w]/ because the single metacharacter \w
(with a lowercase w) specifies the characters a-z, A-Z, 0-9,
and _.

In fact, we can be even more clever than that, because the
metacharacter \W (with an uppercase W) specifies all characters

except for a-z, A-Z, 0-9, and _. Therefore, we could also drop
the ^ metacharacter and simply use /[\W]/ for the expression,
or go a step further and drop the square brackets, as in /\W/,
because it’s a single character.

To give you more ideas of how this all works, Table 16-2
shows a range of expressions and the patterns they match.

Table 16-2. Some example regular expressions

Example Matches

r The first r in The quick brown

rec[ei][ei]ve Either of receive or recieve (but also
receeve or reciive)

rec[ei]{2}ve Either of receive or recieve (but also
receeve or reciive)

rec(ei|ie)ve Either of receive or recieve (but not
receeve or reciive)

cat The word cat in I like cats and dogs

cat|dog The word cat in I like cats and dogs
(matches either cat or dog, whichever is
encountered first)

\. . (the \ is necessary because . is a
metacharacter)

5\.0* 5., 5.0, 5.00, 5.000, etc.

[a-f] Any of the characters a, b, c, d, e, or f

cats$ Only the final cats in My cats are friendly
cats

^my Only the first my in my cats are my pets

\d{2,3} Any two- or three-digit number (00
through 999)

7(,000)+ 7,000; 7,000,000; 7,000,000,000;
7,000,000,000,000; etc.

Example Matches

[\w]+ Any word of one or more characters

[\w]{5} Any five-letter word

General Modifiers
Some additional modifiers are available for regular
expressions:

/g enables global matching. When using a replace
function, specify this modifier to replace all matches,
rather than only the first one.

/i makes the regular expression match case-
insensitive. Thus, instead of /[a-zA-Z]/, you could
specify /[a-z]/i or /[A-Z]/i.

/m enables multiline mode, in which the caret (^) and
dollar sign ($) match before and after any newlines in
the subject string. Normally, in a multiline string, ^
matches only at the start of the string, and $ matches
only at the end of the string.

For example, the expression /cats/g will match both
occurrences of the word cats in the sentence “I like cats, and
cats like me.” Similarly, /dogs/gi will match both
occurrences of the word dogs (Dogs and dogs) in the sentence
“Dogs like other dogs,” because you can use these specifiers
together.

Using Regular Expressions in JavaScript
In JavaScript, you will use regular expressions mostly in three
methods: test (which you have already seen), match, and
replace. Whereas test just tells you whether its argument
matches the regular expression, the match method returns the

result of matching a string against a regular expression passed
as an argument, or null if no match is found.

The following line will try to find whether the sky was cloudy
using both possible spellings of the color:

console.log("The sky was gray".match(/gr[ae]y/))

When using match, you can also pass the regular expression as
a string enclosed in quotes, not in slashes:

console.log("The sky was grey".match("gr[ae]y"))

The replace method takes a second parameter: the string to
replace the text that matches. Like most functions, replace
generates a new string as a return value; it does not change the
input.

To compare the test and replace methods, the following
statement just returns true to let us know that the word cats
appears at least once somewhere within the string:

console.log(/cats/i.test("Cats are funny. I like cats."))

But the following statement replaces both occurrences of the
word cats with the word dogs, printing the result. The search
has to be global (/g) to find all occurrences and case-
insensitive (/i) to find the capitalized Cats:

console.log("Cats are friendly. I like

cats.".replace(/cats/gi,"dogs"))

If you try out the statement, you’ll see a limitation of replace:
because it replaces text with exactly the string you tell it to
use, the first word Cats is replaced by dogs instead of Dogs.

Using Regular Expressions in PHP

The most common regular expression functions that you are
likely to use in PHP are preg_match, preg_match_all, and
preg_replace.

To test whether the word cats appears anywhere within a
string, in any combination of upper- and lowercase, you could
use preg_match like this:

$n = preg_match("/cats/i", "Cats are crazy. I like cats.");

The function returns 1 if the match was found, 0 if it wasn’t,
and FALSE on failure. Because the word cats is in the tested
string, the preceding statement sets $n to 1. The first argument
is the regular expression, and the second is the text to match.
But preg_match is actually a good deal more powerful and
complicated, because it takes a third argument that shows what
text matched:

$n = preg_match("/cats/i", "Cats are curious. I like cats.",

$match);

echo "$n Matches: $match[0]";

The third argument is an array (here, given the name $match).
The function puts the matching text into the first element, so if
the match is successful, you can find the text that matched in
$match[0]. In this example, the output lets us know that the
matched text was capitalized:

1 Matches: Cats

If you wish to locate all matches, you use the
preg_match_all function, like this:

$n = preg_match_all("/cats/i", "Cats are strange. I like cats.",

$match);

echo "$n Matches: ";

for ($j=0 ; $j < $n ; ++$j) echo $match[0][$j]." ";

As before, $match is passed to the function, and the element
$match[0] is assigned the matches made but this time as a
subarray. To display the subarray, this example iterates through
it with a for loop.

When you want to replace part of a string, you can use
preg_replace, as shown here. This example replaces all
occurrences of the word cats with the word dogs, regardless of
case:

echo preg_replace("/cats/i", "dogs", "Cats are furry. I like

cats.");

NOTE
The subject of regular expressions is a large one, and entire books
have been written about it. If you would like more information, I
suggest the Wikipedia entry or Regular-Expressions.info, and I would
also recommend the MDN documentation. Also remember that while
regular expressions are a useful tool, they should not be used as a
general solution to all string-related problems.

Redisplaying a Form After PHP
Validation
OK, back to form validation. So far we’ve created the HTML
document validate.html, which will post through to the PHP
program adduser.php, but only if JavaScript validates the
fields or if JavaScript is disabled or unavailable.

So now it’s time to add PHP code to do its own validation and
then present the form again to the visitor if the validation fails.
There’s no need to create the form HTML again; you’re
supposed to rename (or copy) the validate.html file to
adduser.php and continue in that file.

Example 16-3 contains the code that you should type and save
(or download from the GitHub repository); the part with the
bold typeface is the PHP we’re adding. The form toward the

https://oreil.ly/VtEPf
https://oreil.ly/KNTHs
https://oreil.ly/zVxWD
https://github.com/RobinNixon/lpmj7

end of the file is almost the same—only the error message
output and the value attributes have been added.

NOTE
The reason for first creating validate.html and then renaming it to
adduser.php is to have two different filenames for each of the stages in
case you downloaded the files from the GitHub repository.

Example 16-3. The adduser.php program

<?php // adduser.php

// The PHP functions

function validate_forename($field)

{

 return ($field == '') ? 'No Forename was entered': '';

}

function validate_surname($field)

{

 return($field == '') ? 'No Surname was entered' : '';

}

function validate_username($field)

{

 if ($field == '')

 return 'No Username was entered';

 else if (strlen($field) < 5)

 return 'Usernames must be at least 5 characters';

 else if (preg_match('/[^a-zA-Z0-9_-]/', $field))

 return 'Only letters, numbers, - and _ in usernames';

 return '';

}

function validate_password($field)

{

 if ($field == '')

 return 'No Password was entered';

 else if (strlen($field) < 6)

 return 'Passwords must be at least 6 characters';

 else if (!preg_match('/[a-z]/', $field)

 || !preg_match('/[A-Z]/', $field)

 || !preg_match('/[0-9]/', $field))

 return 'Passwords require one each of a-z, A-Z and 0-9';

 return '';

}

function validate_age($field)

https://github.com/RobinNixon/lpmj7

{

 if ($field == '')

 return 'No Age was entered';

 else if ($field < 18 || $field > 110)

 return 'Age must be between 18 and 110';

 return '';

}

function validate_email($field)

{

 if ($field == '')

 return 'No Email was entered';

 else if (!filter_var($field, FILTER_VALIDATE_EMAIL))

 return 'The Email address is invalid';

 return '';

}

// The PHP code

$forename_html_entities = '';

$surname_html_entities = '';

$username_html_entities = '';

$password_html_entities = '';

$age_html_entities = '';

$email_html_entities = '';

$errors = $values =[];

if ($_POST) {

 foreach ($_POST as $name => $value)

 $values[$name] = trim($value);

 $error = validate_forename($values['forename']);

 if ($error) $errors['forename'] = $error;

 $error = validate_forename($values['forename']);

 if ($error) $errors['forename'] = $error;

 $error = validate_surname($values['surname']);

 if ($error) $errors['surname'] = $error;

 $error = validate_username($values['username']);

 if ($error) $errors['username'] = $error;

 $error = validate_password($values['password']);

 if ($error) $errors['password'] = $error;

 $error = validate_age($values['age']);

 if ($error) $errors['age'] = $error;

 $error = validate_email($values['email']);

 if ($error) $errors['email'] = $error;

 if (!$errors) {

 /*

 This is where you would enter the posted fields into a

database,

 reading the $values array, using password_hash for the

password,

 then redirecting to a success page.

 For example:

 $stmt = $pdo->prepare('INSERT INTO users

VALUES(:fn,:sn,:un,:pw)');

 $stmt->execute([

 ':fn' => $values['forename'],

 ':sn' => $values['surname'],

 ':un' => $values['username'],

 ':pw' => password_hash($values['forename'],

PASSWORD_DEFAULT)

]);

 header('Location: success.php');

 exit;

 We'll simplify it and just output the data:

 */

 echo "<html><body>Form data successfully validated<pre>";

 echo htmlentities(print_r($values, true));

 echo "</pre></body></html>";

 exit;

 }

 // To echo the values back to the form when validation fails

 $forename_html_entities = htmlentities($_POST['forename']);

 $surname_html_entities = htmlentities($_POST['surname']);

 $username_html_entities = htmlentities($_POST['username']);

 $password_html_entities = htmlentities($_POST['password']);

 $age_html_entities = htmlentities($_POST['age']);

 $email_html_entities = htmlentities($_POST['email']);

}

// The HTML/JavaScript section

?>

<!DOCTYPE html>

<html>

 <head>

 <title>An Example Form</title>

 <style>

 .signup {

 border: 1px solid #999999;

 font: normal 14px helvetica;

 color: #444444;

 background-color: #eeeeee;

 border-spacing: 5px;

 }

 .signup th, .signup td {

 padding: 2px;

 }

 .error {

 color: red;

 }

 </style>

 </head>

 <body>

 <form method="post" action="" id="form">

 <table class="signup">

 <th colspan="2" align="center">Signup Form</th>

 <?php if ($errors) { ?>

 <tr><td colspan="2">Sorry, the following errors were

found
in your form:

 <p><i class="error">

 <?php foreach ($errors as $error) echo

htmlentities($error) . '
'; ?>

 </i></p>

 </td></tr>

 <?php } ?>

 <tr><td>Forename</td>

 <td><input type="text" maxlength="32" name="forename"

required

 value="<?php echo $forename_html_entities; ?>"></td>

</tr>

 <tr><td>Surname</td>

 <td><input type="text" maxlength="32" name="surname"

required

 value="<?php echo $surname_html_entities; ?>"></td>

</tr>

 <tr><td>Username</td>

 <td><input type="text" maxlength="16" name="username"

required

 value="<?php echo $username_html_entities; ?>"></td>

</tr>

 <tr><td>Password</td>

 <td><input type="password" name="password" required

 value="<?php echo $password_html_entities; ?>"></td>

</tr>

 <tr><td>Age</td>

 <td><input type="number" max="110" name="age" required

 value="<?php echo $age_html_entities; ?>"></td></tr>

 <tr><td>Email</td>

 <td><input type="email" maxlength="64" name="email"

required

 value="<?php echo $email_html_entities; ?>"></td></tr>

 <tr><td colspan="2" align="center"><input type="submit"

 value="Signup"></td></tr>

 </table>

 </form>

 <script>

 function validateForename(field)

 {

 return (field === "") ? "No Forename was entered." : ""

 }

 function validateSurname(field)

 {

 return (field === "") ? "No Surname was entered." : ""

 }

 function validateUsername(field)

 {

 if (field == "")

 return "No Username was entered."

 else if (field.length < 5)

 return "Usernames must be at least 5 characters."

 else if (/[^a-zA-Z0-9_-]/.test(field))

 return "Only a-z, A-Z, 0-9, - and _ allowed in

Usernames."

 return ""

 }

 function validatePassword(field)

 {

 if (field == "")

 return "No Password was entered."

 else if (field.length < 6)

 return "Passwords must be at least 6 characters."

 else if (!/[a-z]/.test(field) || !/[A-Z]/.test(field) ||

 !/[0-9]/.test(field))

 return "Passwords require one each of a-z, A-Z and 0-

9."

 return ""

 }

 function validateAge(field)

 {

 if (field == "" || isNaN(field))

 return "No Age was entered."

 else if (field < 18 || field > 110)

 return "Age must be between 18 and 110."

 return ""

 }

 function validateEmail(field)

 {

 return (field === "") ? "No Email was entered." : ""

 }

 function validateFields(form)

 {

 const errors = []

 const elements = {}

 let error = ''

 for (let element of form.elements)

 elements[element.name] = element.value.trim()

 error = validateForename(elements.forename)

 if (error) errors.push({field: 'forename', message:

error})

 error = validateSurname(elements.surname)

 if (error) errors.push({field: 'surname', message:

error})

 error = validateUsername(elements.username)

 if (error) errors.push({field: 'username', message:

error})

 error = validatePassword(elements.password)

 if (error) errors.push({field: 'password', message:

error})

 error = validateAge(elements.age)

 if (error) errors.push({field: 'age', message: error})

 error = validateEmail(elements.email)

 if (error) errors.push({field: 'email', message: error})

 return errors

 }

 const validate = function(event)

 {

 const errors = validateFields(event.target)

 if (errors.length) {

 const alerts = []

 for (error of errors) {

 alerts.push(error.field + ": " + error.message)

 }

 alert(alerts.join("\n"))

 event.preventDefault()

 }

 }

 document.getElementById('form').addEventListener('submit',

validate)

 </script>

 </body>

</html>

NOTE
In this example, the input is only trimmed before inserting it into the
database; one exception is the password, which is hashed, as there’s no
need to sanitize the data against SQL injection attacks when
placeholders and prepared statements are used in database queries.

When the form is redisplayed after it has been submitted with errors,
and the submitted values are echoed back to the respective input fields,
the sanitized values (suffixed with _html_entities) are used to
prevent XSS attacks, but these sanitized values are not used for
anything else.

For the email address, we’ve used the built-in validation
provided by type="email" input when validating the email
address in the browser. PHP also has a built-in email address
validation, as used in the example:

filter_var($field, FILTER_VALIDATE_EMAIL)

When called with the FILTER_VALIDATE_EMAIL second
parameter, the filter_var function returns the address
(passed here as $field) if it’s valid, or FALSE when $field is
an invalid email address. Again, this much easier and safer
than writing the email address check yourself.

The result of submitting the form with JavaScript disabled
(and two fields incorrectly completed) is shown in Figure 16-
5.

I have highlighted the PHP section of this code (and changes
to the HTML section) in bold so that you can more clearly see
the difference between this and Examples 16-1 and 16-2.

Figure 16-5. The form as represented after PHP validation fails

Now that you’ve seen how to bring PHP, HTML, and
JavaScript together, Chapter 17 will introduce Ajax
(Asynchronous JavaScript and XML), which uses JavaScript
calls to the server in the background to seamlessly update
portions of a web page, without having to resubmit the entire
page to the web server. But first, to better remember what
you’ve learned, let’s try to answer all the following questions.

Questions
1. What DOM event can you use to send a form for

validation prior to submitting it?

2. What JavaScript method is used to test a string
against a regular expression?

3. Write a regular expression to match any characters
that are not in a word, as defined by regular
expression syntax.

4. Write a regular expression to match either of the
words fox or fix.

5. Write a regular expression to match any single word
followed by any nonword character.

6. Using regular expressions, write a JavaScript function
to test whether the word fox exists in the string The
quick brown fox.

7. Using regular expressions, write a PHP function to
replace all occurrences of the word the in The cow
jumps over the moon with the word my.

8. What HTML attribute is used to precomplete form
fields with a value?

See “Chapter 16 Answers” in the Appendix A for the answers
to these questions.

Chapter 17. Using
Asynchronous
Communication

The term Ajax was first coined in 2005. It stands for
Asynchronous JavaScript and XML, which, in simple terms,
means using a set of methods built into JavaScript to transfer
data between the browser and a server in the background. This
term has now been mostly abandoned in favor of simply
talking about asynchronous communication, and one of the
reasons is that these days, programmers are more likely to use
JavaScript Object Notation (JSON) as their preferred data-
interchange format, as it’s a simple subset of JavaScript.

An excellent example of this technology is Google Maps
(although there are numerous others), in which new sections of
a map are downloaded from the server when needed, without
requiring a page refresh.

Using asynchronous communication not only substantially
reduces the amount of data that must be sent back and forth
but also makes web pages seamlessly dynamic—allowing
them to behave more like self-contained applications. The
results are a much improved user interface and better
responsiveness.

The Fetch API
In the past, making Ajax calls was a real pain in the neck
because there were so many different implementations across
various browsers. Luckily things vastly improved around
2015, when the simple fetch function was introduced to
modern browsers. It is defined by the Fetch standard, which

https://www.json.org/
https://oreil.ly/CKSlq

unifies how requests and responses work across the whole
browser.

So, for example, to make a GET request, you use code such as
this:

fetch("https://example.com")

Or, for a POST request, you can specify the method and add
some fields to the body of the request using the second
parameter:

const data = new FormData()

data.set("field", "value")

const options = {

 method: "POST",

 body: data

}

fetch("https://example.com", options)

Your First Asynchronous Program
Type and save the code in Example 17-1 as urlpost.html, but
don’t load it into your browser yet.

Example 17-1. urlpost.html

<!DOCTYPE html>

<html> <!-- urlpost.html -->

 <head>

 <title>Asynchronous Communication Example</title>

 <style>

 body { text-align:center; }

 </style>

 </head>

 <body>

 <h1>Loading a web page into a DIV</h1>

 <div id="info">This sentence will be replaced</div>

 <script>

 const data = new FormData()

 data.set("url", "cnet.com")

 const options = {

 method: "POST",

 body: data,

 }

 fetch("http://localhost/18/urlpost.php", options)

 .then(response => response.text())

 .then(text => document.getElementById("info").innerHTML

= text)

 </script>

 </body>

</html>

USE INNERTEXT OR TEXTCONTENT
FOR USER INPUT

This example uses the innerHTML property because we want the data
to be rendered as HTML. But assigning user input to this property will
create new DOM elements, including the ones that could be used for a
successful XSS attack. So if you’re going to display user-entered data
or data from untrusted sources, you should instead assign them to the
innerText property or the textContent property; either will display
the data as plain text only.

Let’s go through this document and look at what it does,
starting with the first eleven lines, which simply set up an
HTML document and display a heading. The next line creates
a <div> with the ID info, containing the text This sentence
will be replaced by default. Later on, the text returned
from the asynchronous call will be inserted here.

After this, a new FormData object is created called data,
which is used to set the request field called url and then
stored in the options object as the request body together with
the method used to send the request. Calling the fetch
function returns an object which we’ll use to call the then
method on and pass an anonymous arrow function as the
parameter. The arrow function will receive the response
object and call the text method on it and pass the result for
further processing in the second then call. The second arrow
function takes the text parameter, which contains the HTML
from the URL that fetch was called with as returned by
response.text() in the first arrow function, and displays it
in the <div>.

Circling back to the fetch call, the object it returns is a
Promise. It represents an asynchronous operation in
JavaScript (not necessarily a network operation as you’ll see
soon) and, if the operation completed successfully, we say the
promise was fulfilled. And when the promise becomes
fulfilled, you can execute your own code, which is the first
arrow function passed in the then call:

response => response.text()

The text method also returns a promise: that’s why the
second then call is needed. Then again, when the second
promise is fulfilled, you can run your own code, which now
sets the innerHTML property and finally displays the main
page of cnet.com. The effect is that only the <div> element of
the web page changes, while everything else remains the same.

NOTE
If you set up a development server using AMPPS (or a similar WAMP,
LAMP, or MAMP) as shown in Chapter 2, downloaded the example
files from GitHub and saved them in the document root of the web
server (as described in that chapter), the Chapter 18 folder will be in
the right place for this code to work correctly. If any part of your setup
is different, or you run this code on a development server using a
domain of your choice, you will have to change those values in this
code accordingly.

The Server Half of the Asynchronous Process
Now we get to the PHP half of the equation, which you can
see in Example 17-2. Type this code and save it as urlpost.php.

Example 17-2. urlpost.php

<?php // urlpost.php

 if (isset($_POST['url']))

 {

 echo file_get_contents('http://' . $_POST['url']);

 }

?>

https://github.com/RobinNixon/lpmj7

This program uses the file_get_contents PHP function to
load in the web page at the URL supplied to it in the variable
$_POST['url']. The file_get_contents function is
versatile in that it loads in the entire contents of a file or web
page from either a local or a remote server; it even takes into
account moved pages and other redirects.

Once you have typed the program, you are ready to call up
urlpost.html in your web browser, and after a few seconds you
should see the contents of the cnet.com front page loaded into
the <div> that we created for that purpose.

To test the program, enter the following into your browser:

http://localhost/18/urlpost.html

It won’t be as fast as directly loading the web page, because it
is transferred twice—once to the server and again from the
server to your browser—but the result should look somewhat
similar to Figure 17-1.

Figure 17-1. The cnet.com front page

Not only have we succeeded in making an asynchronous call
and having a response returned to JavaScript, but we’ve also
harnessed the power of PHP to merge in a totally unrelated

external web page. Incidentally, if we had tried to find a way
to asynchronously fetch this web page directly (without
recourse to the PHP server-side module), we wouldn’t have
succeeded, because there are security blocks preventing cross-
origin (sometimes called cross-domain) asynchronous
communication. So, this example also illustrates a handy
solution to a practical problem.

Cross-Origin Resource Sharing (CORS)
Cross-origin security makes using Ajax a little harder than it
used to be when it was first introduced because your
JavaScript code may not be allowed to read the response the
server sent you. The mechanism that allows JavaScript code to
access the response in such cases is called cross-origin
resource sharing (CORS). First let’s explain some of the terms.

Origin
An origin means the part of a URL that is a combination of
schema (sometimes called protocol), domain, and port, if
specified. Given a URL like this:

https://example.com/office/map.html?nonstop=true

the origin part of the URL is https://example.com.

Same-origin and cross-origin requests
Two URLs have the same origin when their origin parts are the
same, like this:

https://example.com/office/map.html?nonstop=true

https://example.com/contact

When you load a page in your browser and create a request,
for example with fetch, which loads a response from a
different URL but with the same origin, we say it’s a same-
origin request.

A cross-origin request is when you’d load a page in your
browser, let’s say https://example.com/contact, and that
page created a request to, for example,
https://maps.com/location?id=1337 or any other domain
that does not have the same origin, either by using fetch,
loading an image from that URL, or similar. All the following
URLs have different origins. Can you spot why?

https://example.com/office

https://www.example.com/contact

https://www.example.net/contact

http://www.example.net/contact

By default, fetch can access the response only when a same-
origin request was sent. This is why you will get an error if
you load http://example.com in your browser, open the
browser console, and try to run the following code:

fetch("https://www.cnet.com")

The browser console will show an error message similar to:

Access to fetch at 'https://www.cnet.com/' from origin
'http://localhost' has been blocked by CORS policy

To allow your JavaScript to access the response (shared from a
different origin, to tie it back to the CORS mechanism), the
www.cnet.com server would need to send a response HTTP
header like this:

Access-Control-Allow-Origin: http://localhost

Which roughly translates to “I, www.cnet.com, allow a
JavaScript running on pages starting with http://localhost
to access the response I’m sending,” and I’m quite sure the
www.cnet.com server will never send such header.

However, the server also can allow any origin to access the
response, which sometimes happens, but at least at the time of

writing, www.cnet.com doesn’t allow that. The header to allow
any origin to access the response looks like this:

Access-Control-Allow-Origin: *

CORS blocking the request is why we’re using the
urlpost.php script to load the home page of cnet.com.
Because then the page http://localhost/18/urlpost.html
can use fetch to send a request to
http://localhost/18/urlpost.php because they have the
same origin.

Using GET Instead of POST
As when you submit any data from a form, you have the
option of submitting your data in the form of GET requests,
and you will save a few lines of code if you do so. However,
there is a possible downside: some browsers may cache GET
requests, whereas POST requests will never be cached. You
don’t want to cache a request, because the browser will just
redisplay what it got the last time instead of going to the server
for fresh input. The solution is to use a workaround that adds a
random parameter to each request, ensuring that each URL
requested is unique. This technique is called cachebusting.

Example 17-3 shows how you would achieve the same result
as with Example 17-1 but using a GET request instead of a
POST.

Example 17-3. urlget.html

<!DOCTYPE html>

<html> <!-- urlget.html -->

 <head>

 <title>Asynchronous Communication Example</title>

 <style>

 body { text-align:center; }

 </style>

 </head>

 <body>

 <h1>Loading a web page into a DIV</h1>

 <div id="info">This sentence will be replaced</div>

 <script>

 const params = new URLSearchParams({

 url: "cnet.com",

 nocache: Math.random() * 1000000

 })

 fetch("http://localhost/18/urlget.php?" + params)

 .then(response => response.text())

 .then(text => document.getElementById("info").innerHTML

= text)

 </script>

 </body>

</html>

The differences to note between the two documents are
highlighted in bold and described as follows:

We create the query string by using the
URLSearchParams object with the desired parameters
passed to the constructor. The advantage of using this
as compared to building the string manually is that the
values will be properly sanitized automatically if
needed.

The first parameter is the URL, cnet.com, and the
second parameter nocache is a random value between
0 and 1 million. This ensures that each URL
requested is different and therefore that no requests
will be cached.

We call the fetch function with only one parameter
(GET request is the default, no need to specify in the
options parameter), supplying a URL that contains a
? symbol followed by the params object that will be
converted to parameter/value pairs.

To accompany this new document, the PHP program must be
modified to respond to a GET request, as in Example 17-4,
urlget.php.

Example 17-4. urlget.php

<?php // urlget.php

 if (isset($_GET['url']))

 {

 echo file_get_contents('http://' . $_GET['url']);

 }

?>

The only difference between this and Example 17-2 is that the
references to $_POST have been replaced with $_GET. The
result of calling up urlget.html in your browser is identical to
loading urlpost.html.

To test this revised version of the program, enter the following
into your browser. You should see the same result as before,
just loaded via a GET rather than a POST request:

http://localhost/18/urlget.html

Sending JSON Requests
Very often, your JavaScript needs to work with more data than
just the HTML seen in the previous fetch examples. This
section will show you how you can use JSON to transfer
structured data from the server to the browser. For example,
besides the HTML of cnet.com home page, we want to receive
a color that will be used for our page header indicating
success. The color could change based on the time the
cnet.com home page was requested, but we’ll simply set it to
blue.

Let’s modify the previous example document and PHP
program to fetch some JSON data. To do this, first look at the
PHP program, jsonget.php, shown in Example 17-5.

Example 17-5. jsonget.php

<?php // jsonget.php

 if (isset($_GET['url']))

 {

 header('Content-Type: application/json');

 $data = [

 'html' => file_get_contents('http://' . $_GET['url']),

 'color' => 'blue',

];

 echo json_encode($data);

 }

?>

This program outputs the correct JSON Content-Type header
before printing a JSON-encoded associative array with two
items: the first is the HTML of the requested page; the second
is the color.

On to the HTML document, jsonget.html, shown in
Example 17-6.

Example 17-6. jsonget.html

<!DOCTYPE html>

<html> <!-- jsonget.html -->

 <head>

 <title>Asynchronous Communication Example</title>

 <style>

 body { text-align:center; }

 </style>

 </head>

 <body>

 <h1 id="header">Loading a web page into a DIV</h1>

 <div id="info">This sentence will be replaced</div>

 <script>

 const params = new URLSearchParams({

 url: "cnet.com",

 nocache: Math.random() * 1000000

 })

 fetch("http://localhost/18/jsonget.php?" + params)

 .then(response => response.json())

 .then(data => {

document.getElementById("header").style.backgroundColor =

data.color

 document.getElementById("info").innerHTML = data.html

 })

 </script>

 </body>

</html>

The differences between this and the previous example are
highlighted in bold. As you can see, this code is substantially
similar to the previous versions, except that fetch now

requests jsonget.php and the first arrow function uses
response.json() to parse the JSON in the server response.

The second then call uses an arrow function that receives the
parsed JSON in the data parameter, and it uses the
data.color property to set the background color of the <h1>
header, now with the id="header" attribute, and the
data.html property to show the home page HTML, similar to
the previous examples.

You may have noticed that the property names color and
html match the keys of the array encoded to JSON in the PHP
code. You can easily add or use other data as needed.

Using XMLHttpRequest
Although more rare today, some existing or older code might
still employ a different approach to Ajax using the
XMLHttpRequest object, sometimes referred to as XHR. Using
it for any new development is not recommend as it is a less
flexible and less powerful alternative to fetch. It is a legacy
way of sending asynchronous requests, so we’ll show it only
very shortly. If you’d like to know more, you can always read
the MDN web docs.

The code in Example 17-7 performs the same as the code
using fetch in Example 17-1 except it uses XMLHttpRequest.

Example 17-7. urlpostxhr.html
<!DOCTYPE html>

<html> <!-- urlpostxhr.html -->

 <head>

 <title>Asynchronous Communication Example</title>

 <style>

 body { text-align:center; }

 </style>

 </head>

 <body>

 <h1>Loading a web page into a DIV</h1>

 <div id="info">This sentence will be replaced</div>

https://oreil.ly/O2DY_

 <script>

 const xhr = new XMLHttpRequest()

 xhr.open("POST", "http://localhost/18/urlpost.php", true)

 xhr.setRequestHeader("Content-Type", "application/x-www-form-

urlencoded")

 xhr.send("url=cnet.com")

 xhr.onload = () => {

 if (xhr.readyState === xhr.DONE && xhr.status === 200) {

 document.getElementById("info").innerHTML =

xhr.responseText

 }

 };

 </script>

 </body>

</html>

The HTML is the same as in Example 17-1, except the
<script>...</script> block. It uses XMLHttpRequest to
send a POST request, but here we also have to set the correct
Content-Type header, check the readyState property, and
handle the load event.

When using XMLHttpRequest, the xhr.responseXML property
contains the XML response, if the server sent back an XML
document, parsed into a DOM tree for you if you’d ever need
it. If you have a JSON response you’d have to parse it yourself
using JSON.parse(); nothing like the response.json()
method is offered by the Fetch API.

Using Frameworks for
Asynchronous Communication
Now that you know how to code your own asynchronous
routines, you might like to investigate some of the free
frameworks available to make it even easier, and that offer
many more advanced features. In particular, I suggest you
check out React, probably the fastest-growing framework, or
Axios. You may also encounter jQuery, which is still very
popular in existing applications but shouldn’t be used for new
development as most of the functionality is now available
natively.

https://react.dev/
https://axios-http.com/
https://jquery.com/

In Chapter 18 we’ll look at how to apply styling to your
websites with CSS, but before moving on, you should try to
answer the following questions first to repeat what you’ve
learned in this chapter.

Questions
1. Which function can you use to conduct asynchronous

communication between a web server and JavaScript
client?

2. How can you send a POST request using the fetch
function?

3. What does the fetch function return and how do you
use it?

4. Create a function to get the response as parsed JSON
that can be passed to the then method called on the
promise object returned by fetch.

5. If your server returned an array with two items called
a and b encoded as JSON, how can you access the
fields in your JavaScript code after calling fetch?

6. Given the URL https://book.example/ch18?q=6,
what’s the origin part of the URL?

7. You’ve loaded https://example.com/map into your
browser, and JavaScript running on that page would
like to send an asynchronous request to
https://www.example.com/data. Would that be a same-
origin request? Explain why or why not.

8. What is the best way to allow JavaScript on
http://localhost/info to access the fetch response
from https://example.com/data?

See “Chapter 17 Answers” in the Appendix A for the answers
to these questions.

Chapter 18. Advanced
CSS

The first CSS implementation was drawn up in 1996 and
released in 1999; it has been supported by all browser releases
since 2001. The standard for this version (CSS1) was revised
in 2008. In 1998, developers began drawing up the second
specification (CSS2); its standard was completed in 2007 and
revised in 2009, while development for the CSS3 specification
commenced in 2001, with some new features proposed in
2009 and recommendations continuing to be made.

A CSS4 was proposed by the CSS working group, but the
naming convention appears to have been dropped as this is not
a major leap forward. Rather, it’s simply a development of one
part of CSS—the selectors, and therefore mostly referred to as
Selectors Level 4.

Thankfully, though, the CSS working group publishes regular
snapshots of the CSS modules that it considers stable, and you
can see the 2023 snapshot at the World Wide Web Consortium
(W3C) website, which is the best place to gauge the current
state of play in the world of CSS. You can learn more about
how CSS3 has developed in practice as of 2023 (and also
what’s coming) at the Chrome Developers Blog.

In this chapter, I’ll take you through the most important CSS3
features that have been adopted by the major browsers, many
of which provide functionality that previously could be
attained only with JavaScript.

I recommend using CSS, instead of JavaScript, to implement
dynamic features. The features CSS provides make document
attributes part of the document itself, instead of being tacked
on through JavaScript, providing a cleaner design.

https://oreil.ly/uSPd7
https://oreil.ly/qyh0Q
https://oreil.ly/Uft1N

NOTE
There’s an awful lot to CSS, and browsers implement the various
features differently (if at all). When you want to ensure that the CSS
you are creating will work in all browsers, first look at the “Can I
Use…” website. It maintains a record of what features are available in
which browsers, so it will always be more up-to-date than this book,
which sees a new edition only every couple of years—and CSS can
move a long way in that time.

Attribute Selectors
In Supplemental Chapter 1, “Introduction to CSS”, (available
as a bonus PDF in the GitHub resource for this book), I detail
the various CSS attribute selectors, which I will now quickly
recap. Selectors are used in CSS to match HTML elements,
and there are 10 different types, as listed in Table 18-1.

https://caniuse.com/
https://oreil.ly/H9YTV
https://github.com/RobinNixon/lpmj7

Table 18-1. CSS selectors, pseudoclasses, and pseudoelements

Selector type Example

Universal selector * { color:#555; }

Type selectors b { color:red; }

Class selectors .classname { color:blue; }

ID selectors #id { background:cyan; }

Descendant selectors span em { color:green; }

Child selectors div > em { background:lime; }

Adjacent sibling
selectors

i + b { color:gray; }

Attribute selectors a[href='info.htm'] { color:red; }

Pseudoclasses a:hover { font-weight:bold; }

Pseudoelements P::first-letter { font-size:300%;

}

The CSS designers decided that most of these selectors
worked just fine the way they were, but made three
enhancements so that you can more easily match elements
based on the contents of their attributes. The following
sections examine these.

In CSS2 you can use a selector such as a[href='info.htm']
to match the string info.htm when found in an href attribute,
but there’s no way to match only a portion of a string. CSS3
comes to the rescue with three new operators: ^, $, and *. If
one directly precedes the = symbol, you can match the start,
end, or any part of a string, respectively.

The ^= Operator
The ^= operator matches at the start of a string. So, for
example, the following will match any href attribute whose
value begins with the string http://website:

a[href^='http://website']

Therefore, the following element will match:

But this will not:

The $= Operator
To match only at the end of a string, you can use a selector
such as the following, which will match any img tag whose
src attribute ends with .png:

img[src$='.png']

For example, the following will match:

But this will not:

The *= Operator
To match any substring anywhere in the attribute, you can use
a selector such as the following, which finds any links on a
page that have the string google anywhere within them:

a[href*='google']

For example, the HTML segment will match, while the segment
 will not.

The box-sizing Property
The W3C box model specifies that the width and height of an
object should refer only to the dimensions of an element’s
content, ignoring any padding or border. But some web
designers have expressed a desire to specify dimensions that
refer to an entire element, including any padding and border.
Figure 18-1 shows two elements of the same width using the
different box models.

To provide this feature, CSS lets you choose the box model
you wish to use with the box-sizing property. For example,
to use the total width and height of an object including
padding and borders, use this declaration:

box-sizing : border-box;

Or to have an object’s width and height refer only to its
content, use this declaration (the default):

box-sizing : content-box;

Figure 18-1. An element with width: 200px in the two box models

CSS Backgrounds
CSS provides two related properties: background-clip and
background-origin. Between them, you can specify where a
background should start within an element, and how to clip the
background so that it doesn’t appear in parts of the box model
where you don’t want it to.

To accomplish this, both properties support these values:

border-box

Refers to the outer edge of the border

padding-box

Refers to the outer edge of the padding area

content-box

Refers to the outer edge of the content area

The background-clip Property
The background-clip property specifies whether the
background should be ignored (clipped) if it appears within
either the border or padding area of an element. For example,
the following declaration states that the background may
display in all parts of an element, all the way to the outer edge
of the border:

background-clip : border-box;

To keep the background from appearing within the border area
of an element, you can restrict it to only the section of an
element inside the outer edge of its padding area, like this:

background-clip : padding-box;

To restrict the background to display only within the content
area of an element, use this declaration:

background-clip : content-box;

Figure 18-2 shows three rows of elements displayed in the
Chrome web browser, in which the first row uses border-box
for the background-clip property, the second uses padding-
box, and the third uses content-box.

Figure 18-2. Different ways of combining CSS background properties

In the first row, the inner box (an image file that has been
loaded into the top left of the element, with repeating disabled)
is allowed to display anywhere in the element. You can also
clearly see it displayed in the border area of the first box
because the border has been set to dotted.

In the second row, neither the background image nor the
background shading displays in the border area, because they
have been clipped to the padding area with a background-
clip property value of padding-box.

Then, in the third row, both the background shading and the
image have been clipped to display only within the inner
content area of each element (shown inside a light-colored,

dotted box), using a background-clip property of content-
box.

The background-origin Property
With the background-origin property, you can control where
a background image will be located by specifying where the
top left of the image should start. For example, the following
declaration states that the background image’s origin should be
the top-left corner of the outer edge of the border:

background-origin : border-box;

To set the origin of an image to the top-left outer corner of the
padding area, use this declaration:

background-origin : padding-box;

Or to set the origin of an image to the top-left corner of an
element’s inner content section, use this declaration:

background-origin : content-box;

Looking again at Figure 18-2, you can see in each row the first
box uses a background-origin property of border-box, the
second uses padding-box, and the third uses content-box.
Consequently, in each row the smaller inner box displays at
the top left of the border in the first box, the top left of the
padding in the second, and the top left of the content in the
third box.

NOTE
The only differences to note between the rows, with regard to the
origins of the inner box in Figure 18-2, are that in rows 2 and 3 the
inner box is clipped to the padding and content areas, respectively;
therefore, outside these areas no portion of the box is displayed.

The background-size Property

In the same way that you can specify the width and height of
an image when used in the tag, in the latest browser
versions you can also do so for background images.

Apply the property as follows (where ww is the width and hh is
the height):

background-size : wwpx hhpx;

If you prefer, you can use only one argument, and then both
dimensions will be set to that value. Also, if you apply this
property to a block-level element such as a <div> (rather than
one that is inline, such as a), you can specify the width
and/or height as a percentage instead of a fixed value. Units
such as em (relative to the font size of this element) and rem
(relative to the font size of the root element) also can be used.
The property allows two special size values, contain and
cover, that specify how the image should be sized and scaled.
See the MDN page on resizing images with background-size
for an example.

Using the auto Value
If you wish to scale only one dimension of a background
image, and then have the other one scale automatically to
retain the same proportions, you can use the value auto for the
other dimension, like this:

background-size : 100px auto;

This sets the width to 100 pixels and the height to a value
proportionate to the increase or decrease in width.

NOTE
Different browsers may require different versions of the various
background property names, so refer to the “Can I Use…” website to
ensure you are applying all the versions required for the browsers you
are targeting.

https://oreil.ly/BZr4N
https://caniuse.com/

Multiple Backgrounds
With CSS you can attach multiple backgrounds to an element,
each of which can use the previously discussed CSS
background properties. Figure 18-3 shows an example of this;
eight different images have been assigned to the background to
create the four corners and four edges of the certificate border.

To display multiple background images in a single CSS
declaration, separate them with commas. Example 18-1 shows
the HTML and CSS used to create the background in
Figure 18-3.

Example 18-1. Using multiple images in a background

<!DOCTYPE html>

<html> <!-- backgroundimages.html -->

 <head>

 <title>CSS Multiple Backgrounds Example</title>

 <style>

 .border {

 font-family:'Times New Roman';

 font-style :italic;

 font-size :170%;

 text-align :center;

 padding :60px;

 width :350px;

 height :500px;

 background :url('b1.gif') top left no-repeat,

 url('b2.gif') top right no-repeat,

 url('b3.gif') bottom left no-repeat,

 url('b4.gif') bottom right no-repeat,

 url('ba.gif') top repeat-x,

 url('bb.gif') left repeat-y,

 url('bc.gif') right repeat-y,

 url('bd.gif') bottom repeat-x

 }

 </style>

 </head>

 <body>

 <div class='border'>

 <h1>Employee of the month</h1>

 <h2>Awarded To:</h2>

 <h3>__________________</h3>

 <h2>Date:</h2>

 <h3>___/___/_____</h3>

 </div>

 </body>

</html>

Figure 18-3. A background created with multiple images

In the CSS section, the first four lines of the background
declaration place the corner images into the four corners of the
element, and the final four place the edge images, which are
handled last because the order of priority for background

images goes from top to bottom. In other words, where they
overlap, additional background images will appear behind
already placed images. If the GIFs were in the reverse order,
the repeating edge images would display on top of the corners,
which would be incorrect.

NOTE
Using this CSS, you can resize the containing element to any
dimensions, and the border will always correctly resize to fit, which is
much easier than using tables or multiple elements for the same effect.

CSS Borders
CSS also brings a lot more flexibility to the way borders can
be presented, by allowing you to independently change the
colors of all four border edges, display images for the edges
and corners, provide a radius value for applying rounded
corners to borders, and place box shadows underneath
elements.

The border-color Property
There are two ways to apply colors to a border. First, you can
pass a single color to the property:

border-color : #888;

NOTE
The shorthand color notation #303 is the same as specifying #330033,
so #888 seen in the preceding code snippet is the same as #888888.

This property sets all the borders of an element to mid-gray.
You can also set border colors individually, like this (which
sets the border colors to various shades of gray):

border-top-color : #000;

border-left-color : #444;

border-right-color : #888;

border-bottom-color : #ccc;

Or you can set all the colors individually with a single
declaration:

border-color:#f00 #0f0 #880 #00f;

This declaration sets the top border color to #f00, the right one
to #0f0, the bottom one to #880, and the left one to #00f (red,
green, orange, and blue, respectively). You can also use color
names for the arguments.

The border-radius Property
Prior to CSS3, talented web developers came up with
numerous tweaks and fixes to achieve rounded borders,
generally using <table> or <div> tags.

Now adding rounded borders to an element is really simple,
and it works in the latest versions of all major browsers, as
shown in Figure 18-4, in which a 10-pixel border is displayed
in different ways. Example 18-2 shows the HTML for this.

Figure 18-4. Mixing and matching various border radius properties

Example 18-2. The border-radius property

<!DOCTYPE html>

<html> <!-- borderradius.html -->

 <head>

 <title>CSS Border Radius Examples</title>

 <style>

 .box {

 margin-bottom : 10px;

 font-family : 'Courier New', monospace;

 font-size : 1rem;

 text-align : center;

 padding : 10px;

 width : 380px;

 height : 75px;

 border : 10px solid #006;

 }

 .b1 {

 border-radius : 40px;

 }

 .b2 {

 border-radius : 40px 40px 20px 20px;

 }

 .b3 {

 border-top-left-radius : 20px;

 border-top-right-radius : 40px;

 border-bottom-left-radius : 60px;

 border-bottom-right-radius : 80px;

 }

 .b4 {

 border-top-left-radius : 40px 20px;

 border-top-right-radius : 40px 20px;

 border-bottom-left-radius : 20px 40px;

 border-bottom-right-radius : n20px 40px;

 }

 </style>

 </head>

 <body>

 <div class='box b1'>

 border-radius : 40px;

 </div>

 <div class='box b2'>

 border-radius : 40px 40px 20px 20px;

 </div>

 <div class='box b3'>

 border-top-left-radius :20px;

 border-top-right-radius :40px;

 border-bottom-left-radius :60px;

 border-bottom-right-radius:80px;

 </div>

 <div class='box b4'>

 border-top-left-radius :40px 20px;

 border-top-right-radius :40px 20px;

 border-bottom-left-radius :20px 40px;

 border-bottom-right-radius:20px 40px;

 </div>

 </body>

</html>

So, for example, to create a rounded border with a radius of 20
pixels, you can simply use the following declaration:

border-radius : 20px;

You can specify a separate radius for each of the four corners,
like this (applied in a clockwise direction starting from the
top-left corner):

border-radius : 10px 20px 30px 40px;

If you prefer, you can also address each corner of an element
individually, like this:

border-top-left-radius : 20px;

border-top-right-radius : 40px;

border-bottom-left-radius : 60px;

border-bottom-right-radius : 80px;

And, when referencing individual corners, you can supply two
arguments to choose a different vertical and horizontal radius
(giving more interesting and subtle borders), like this:

border-top-left-radius : 40px 20px;

border-top-right-radius : 40px 20px;

border-bottom-left-radius : 20px 40px;

border-bottom-right-radius : 20px 40px;

The first argument is the horizontal, and the second is the
vertical radius.

Box Shadows
To apply a box shadow, specify a horizontal and vertical offset
from the object, the amount of blurring to add to the shadow,
and the color to use, like this:

box-shadow : 15px 15px 10px #888;

The two instances of 15px specify the vertical and horizontal
offset from the element, and these values can be negative,
zero, or positive. The 10px specifies the amount of blurring,
with smaller values resulting in less blurring, and #888 is the
color for the shadow, which can be any valid color value. The
result of this declaration can be seen in Figure 18-5.

Figure 18-5. A box shadow displayed under an element

Element Overflow
In CSS2, you can indicate what to do when one element is too
large to be fully contained by its parent by setting the
overflow property to hidden, visible, scroll, or auto. But
with CSS3, you can now separately apply these values in the
horizontal or vertical directions, as well as with these example
declarations:

overflow-x : hidden;

overflow-x : visible;

overflow-y : auto;

overflow-y : scroll;

Multicolumn Layout

One of the features most requested by web developers is
multiple columns, and this was realized in CSS3. Now,
flowing text over multiple columns is as easy as specifying the
number of columns and then (optionally) choosing the spacing
between them and the type of dividing line (if any), as shown
in Figure 18-6 (created with Example 18-3).

Figure 18-6. Flowing text in multiple columns

Example 18-3. Using CSS to create multiple columns

<!DOCTYPE html>

<html> <!-- multiplecolumns.html -->

 <head>

 <title>Multiple Columns</title>

 <style>

 .columns {

 text-align : justify;

 font-size : 1.3rem;

 column-count : 3;

 column-gap : 1em;

 column-rule : 1px solid black;

 }

 </style>

 </head>

 <body>

 <div class='columns'>

 Now is the winter of our discontent

 Made glorious summer by this sun of York;

 And all the clouds that lour'd upon our house

 In the deep bosom of the ocean buried.

 Now are our brows bound with victorious wreaths;

 Our bruised arms hung up for monuments;

 Our stern alarums changed to merry meetings,

 Our dreadful marches to delightful measures.

 Grim-visaged war hath smooth'd his wrinkled front;

 And now, instead of mounting barded steeds

 To fright the souls of fearful adversaries,

 He capers nimbly in a lady's chamber

 To the lascivious pleasing of a lute.

 </div>

 </body>

</html>

Within the .columns class, the first two lines simply tell the
browser to right-justify the text and to set it to a font size of
1.3rem. These declarations aren’t needed for multiple
columns, but they improve the text display. The remaining
lines set up the element so that, within it, text will flow over
three columns, with a gap of 1em between the columns and
with a single-pixel border down the middle of each gap.

Colors and Opacity
The ways you can define colors have greatly expanded with
CSS3, and you can now also use CSS functions to apply colors
in the common formats RGB (red, green, and blue), RGBA
(red, green, blue, and alpha), HSL (hue, saturation, and
luminance), and HSLA (hue, saturation, luminance, and
alpha). The alpha value specifies a color’s transparency, which
allows underlying elements to show through.

HSL Colors
To define a color with the hsl function, you must first choose
a value for the hue between 0 and 359 from a color wheel.
Any higher color numbers simply wrap around to the
beginning again, so the value of 0 is red, and so are the values
360 and 720.

In a color wheel, the primary colors of red, green, and blue are
separated by 120 degrees, so pure red is 0, green is 120, and
blue is 240. The numbers between these values represent
shades comprising different proportions of the primary colors
on either side.

Next you need the saturation level, which is a value between 0
and 100%. This specifies how washed out or vibrant a color
will appear. The saturation values commence in the center of
the wheel with a mid-gray color (a saturation of 0%) and then
become more vivid as they progress to the outer edge (a
saturation of 100%).

All that’s left then is for you to decide how bright you want the
color to be, by choosing a luminance value of between 0 and
100%. A value of 50% for the luminance gives the fullest,
brightest color. Decreasing the value (down to a minimum of
0%) darkens the color until it displays as black, and increasing
the value (up to a maximum of 100%) lightens the color until it
shows as white. You can visualize this as if you are mixing
levels of either black or white into the color.

Therefore, for example, to choose a fully saturated yellow
color with standard percent brightness, you would use a
declaration like this:

color : hsl(60, 100%, 50%);

Or, for a darker blue color, you would use a declaration like
this:

color : hsl(240, 100%, 40%);

You can also use this (and all other CSS color functions) with
any property that expects a color, such as background-color
and so on.

HSLA Colors
To provide even further control over how colors appear, you
can use the hsla function, supplying it with a fourth (alpha)
level for a color, which is a floating-point value between 0 and
1. A value of 0 specifies that the color is totally transparent,
while 1 means it is fully opaque.

Here’s how you would choose a fully saturated yellow color
with standard brightness and 30% opacity:

color : hsla(60, 100%, 50%, 0.3);

Or, for a fully saturated but lighter blue color with 82%
opacity, you could use this declaration:

color : hsla(240, 100%, 60%, 0.82);

RGB Colors
You probably are more familiar with the RGB system of
selecting a color, as it’s similar to the #nnnnnn and #nnn color
formats. For example, to apply a yellow color to a property,
you can use either of the following declarations (the first
supporting 16 million colors, and the second supporting
4,000):

color : #ffff00;

color : #ff0;

You can also use the CSS rgb function to achieve the same
result but with decimal numbers instead of hexadecimal
(where 255 decimal is ff hexadecimal):

color : rgb(255, 255, 0);

But even better than that, you don’t even have to think in
amounts of up to 256 anymore, because you can specify
percentage values, like this:

color : rgb(100%, 100%, 0);

In fact, you can now get very close to a desired color by
thinking about its primary colors. For example, green and blue
make cyan, so to create a color close to cyan, but with more

blue in it than green, you could make a good first guess at 0%
red, 40% green, and 60% blue and try a declaration like this:

color : rgb(0%, 40%, 60%);

RGBA Colors
As with the hsla function, the rgba function supports a fourth
alpha argument, so you can, for example, apply the previous
cyan-like color with an opacity of 40% by using a declaration
such as this:

color : rgba(0%, 40%, 60%, 0.4);

The opacity Property
The opacity property provides the same alpha control as the
hsla and rgba functions but lets you modify an object’s
opacity (or transparency, if you prefer) separately from its
color, as shown in Figure 18-7.

Figure 18-7. A fully transparent picture with opacity set to 0

To use it, apply a declaration such as the following to an
element (which in this example sets the opacity to 25%, or
75% transparent):

opacity : 0.25;

Text Effects
A number of new effects can now be applied to text with the
help of CSS3, including text shadows, text overlapping, and
word wrapping.

The text-shadow Property
The text-shadow property is similar to the box-shadow
property and takes the same set of arguments: a horizontal and
vertical offset, an amount for the blurring, and the color to use.
For example, the following declaration offsets the shadow by
3 pixels both horizontally and vertically and displays the
shadow in dark gray, with a blurring of 4 pixels:

text-shadow : 3px 3px 4px #444;

The result of this declaration looks like Figure 18-8 and works
in all recent versions of all major browsers (but not IE 9 or
lower).

Figure 18-8. Applying a shadow to text

The text-overflow Property
When using any of the CSS overflow properties with a value
of hidden, you can also use the text-overflow property to
place an ellipsis (three dots) just before the cutoff to indicate
that some text has been truncated, like this:

text-overflow : ellipsis;

Without this property, when the text “To be, or not to be. That
is the question.” is truncated, the result will look like
Figure 18-9; with the declaration applied, however, the result
looks like Figure 18-10.

Figure 18-9. Text is automatically truncated

Figure 18-10. Instead of being cut off, text trails off using an ellipsis

For this to work, three things are required:

The element should have an overflow property that
is not visible, such as overflow:hidden.

The element must have the white-space:nowrap
property set to constrain the text.

The width of the element must be less than that of the
text to truncate.

The word-wrap Property
When you have a really long word that is wider than the
element containing it, it will either overflow or be truncated.
But as an alternative to using the text-overflow property and
truncating text, you can use the word-wrap property with a
value of break-word to wrap long lines, like this:

word-wrap : break-word;

For example, in Figure 18-11 the word
Honorificabilitudinitatibus is too wide for the containing box
(whose righthand edge is shown as a solid vertical line
between the letters t and a), and, because no overflow
properties have been applied, it has overflowed its bounds.

Figure 18-11. The word is too wide for its container and has overflowed

But in Figure 18-12, the word-wrap property of the element
has been assigned a value of break-word, so the word has
neatly wrapped around to the next line.

Figure 18-12. The word now wraps at the righthand edge

Web Fonts
The use of CSS web fonts vastly increases the typography
available to web designers by allowing fonts to be loaded in
and displayed from across the web, not just from the user’s
computer. To achieve this, declare a web font by using @font-
face, like this:

@font-face

{

 font-family : FontName;

 src : url('FontName.otf');

}

The url function requires a value containing the path or URL
of a font. You can use either TrueType (.ttf) or OpenType (.otf)
fonts.

To tell the browser the type of font, you can use the format
function, like this for OpenType fonts:

@font-face

{

 font-family : FontName;

 src : url('FontName.otf') format('opentype');

}

Or this for TrueType fonts:

@font-face

{

 font-family : FontName;

 src : url('FontName.ttf') format('truetype');

}

However, because Internet Explorer accepts only EOT fonts, it
ignores @font-face declarations that contain the format
function.

Google Web Fonts
One of the neatest ways to use web fonts is to load them for
free from Google’s servers. To find out more about this, check
out the Google Fonts Website, seen in Figure 18-13, where
you can access well over one thousand fonts.

PRIVACY ISSUES USING A THIRD-
PARTY SITE

If you link to a Google-hosted font, be aware of the privacy and data
collection that comes with using the tool; especially if your website is
used in Europe you may need to obtain user consent. Consult your
legal advisor and the Google Fonts Privacy and Data Collection
document. You can also download the selected font and serve the files
from your server if you’re not sure whether a Google-hosted font is the
right choice for you and your users.

https://fonts.google.com/
https://oreil.ly/dONoy

Figure 18-13. Some of Google’s web fonts

To show you how easy it is to use one of these fonts, here’s
how to load a Google font (in this case, Lobster) into your
HTML for use in <h1> headings:

<!DOCTYPE html>

<html>

 <head>

 <style>

 h1 { font-family:'Lobster', arial, serif; }

 </style>

 <link href='http://fonts.googleapis.com/css?family=Lobster'

 rel='stylesheet'>

 </head>

 <body>

 <h1>Hello</h1>

 </body>

</html>

When you select a font from the website, Google provides the
<link> tag to copy and paste into the <head> of your web
page.

Transformations

Using transformations, you can skew, rotate, stretch, and
squash elements in any of up to three dimensions. This makes
it easy to create great effects by stepping out of the uniform
rectangular layout of <div> and other elements, because now
they can be shown at a variety of angles and in many different
forms.

To perform a transformation, use the transform property. You
can apply various properties to the transform property,
starting with the value none, which resets an object to a
nontransformed state:

transform:none;

You can supply one or more of the following functions to the
transform property:

matrix

Transforms an object by applying a matrix of values to it

translate

Moves an element’s origin

scale

Scales an object

rotate

Rotates an object

skew

Skews an object

The only one of these that might cause you to scratch your
head is skew. With this function, one coordinate is displaced in
one direction in proportion to its distance from a coordinate

plane or axis. So, a rectangle, for example, is transformed into
a parallelogram when skewed.

There are also single versions of many of these functions, such
as translateX, scaleY, and so on.

So, for example, to rotate an element clockwise by 45 degrees,
you could apply this declaration to it:

transform : rotate(45deg);

At the same time, you could enlarge this object, as in the
following declaration, which enlarges its width by 1.5 times
and its height by 2 times and then performs the rotation.
Figure 18-14 shows an object before and after the
transformations are applied:

transform : scale(1.5, 2) rotate(45deg);

Figure 18-14. An object before and after transformation

You can also transform objects in three dimensions by using
the following CSS 3D transformation features:

perspective

Releases an element from 2D space and creates a third
dimension within that it can move. Required to work with
3D CSS functions.

transform-origin

Exploits perspective, setting the location at which all lines
converge to a single point.

translate3d

Moves an element to another location in its 3D space.

scale3d

Rescales one or more dimensions.

rotate3d

Rotates an element around any of the x-, y-, and z-axes.

Figure 18-15 shows a 2D object that has been rotated in 3D
space with a CSS rule like this:

transform:perspective(200px) rotateX(20deg) rotateY(40deg)

rotateZ(10deg);

Figure 18-15. A figure rotated in 3D space

Transitions
Also appearing in all the latest major browser versions is a
dynamic new feature called transitions. These specify an
animation effect you want to occur when an element is
transformed, and the browser will automatically take care of
all the in-between frames for you.

The four properties to supply to set up a transition are:

transition-property : property;

transition-duration : time;

transition-delay : time;

transition-timing-function : type;

Properties to Transition
Transitions have properties such as height and border-
color. Specify the properties you want to change in the CSS
property named transition-property. (I’m using the word
property here in two different ways: for a CSS property and
for the transition properties it sets.)

You can include multiple properties by separating them with
commas, like this:

transition-property : width, height, opacity;

Or if you want absolutely everything about an element to
transition (including colors), use the value all, like this:

transition-property : all;

Transition Duration
The transition-duration property requires a value of 0
seconds or greater, like the following, which specifies that the
transition should take 1.25 seconds to complete:

transition-duration : 1.25s;

Transition Delay
If the transition-delay property is given a value greater
than 0 seconds (the default), it introduces a delay between the
initial display of the element and the beginning of the
transition. The following starts the transition after a 0.1-second
delay:

transition-delay : 0.1s;

If the transition-delay property is given a value of less
than 0 seconds (in other words, a negative value), the
transition will execute the moment the property is changed but
will appear to have begun execution at the specified offset,
partway through its cycle.

Transition Timing
The transition-timing function property requires one of the
following values:

ease

Start slowly, get faster, and then end slowly.

linear

Transition at constant speed.

ease-in

Start slowly, and then go quickly until finished.

ease-out

Start quickly, stay fast until near the end, and then end

slowly.

ease-in-out

Start slowly, go fast, and then end slowly.

Using any of the values containing the word ease ensures that
the transition looks extra fluid and natural, unlike a linear
transition that seems more mechanical. And if these aren’t
sufficiently varied for you, you can also create your own
transitions using the cubic-bezier function.

For example, here are the declarations used to create the
preceding five transition types, illustrating how you can easily
create your own:

transition-timing-function:cubic-bezier(0.25, 0.1, 0.25, 1);

transition-timing-function:cubic-bezier(0, 0, 1, 1);

transition-timing-function:cubic-bezier(0.42, 0, 1, 1);

transition-timing-function:cubic-bezier(0, 0, 0.58, 1);

transition-timing-function:cubic-bezier(0.42, 0, 0.58, 1);

Shorthand Syntax
You might find it easier to use the shorthand version of this
property and include all the values in a single declaration like

the following, which will transition all properties linearly, over
a period of 0.3 seconds, after an initial (optional) delay of 0.2
seconds:

transition:all .3s linear .2s;

Doing this will save you the trouble of entering many very
similar declarations, particularly if you are supporting all the
major browser prefixes.

Example 18-4 illustrates how you might use transitions and
transformations together. The CSS creates a square, orange
element with some text in it, and a hover pseudoclass
specifying that, when the mouse passes over the object, it
should rotate by 180 degrees and change from orange to
yellow (see Figure 18-16).

Example 18-4. A transition on hover effect

<!DOCTYPE html>

<html>

 <head>

 <title>Transitioning on hover</title>

 <style>

 #square {

 position : absolute;

 top : 50px;

 left : 50px;

 width : 100px;

 height : 100px;

 padding : 2px;

 text-align : center;

 border-width : 1px;

 border-style : solid;

 background : orange;

 transition : all .8s ease-in-out;

 }

 #square:hover {

 background : yellow;

 transform : rotate(180deg);

 }

 </style>

 </head>

 <body>

 <div id='square'>

 Square shape

 created using

 a simple div

 element with

 a 1px border

 </div>

 </body>

</html>

Figure 18-16. The object rotates and changes color when hovered over

The object will rotate clockwise when hovered over while
slowly changing from orange to yellow.

CSS transitions are smart in that when they are canceled, they
smoothly return to their original value. So, if you move the
mouse away before the transition has completed, it will
instantly reverse and transition back to its initial state.

Flexbox
Flexbox layout allows you to distribute space and align
elements within a container element regardless of its
dimensions, enabling responsive layouts that work with all
viewports, by applying the value flex to its display property,
like this:

#myelement {

 display : flex;

}

The following examples use a series of <div> elements, where
one such element contains three <p> and one <div> element,
each with a different background set, which is omitted here for
brevity, but the HTML looks like this:

<div>

 <p>Some long text 1 ...</p>

 <div id="div">DIV</div>

 <p>Longer ...</p>

 <p>The longest ...</p>

</div>

You can see the result of adding the display: flex property
in Figure 18-17.

Figure 18-17. Enabling flexbox

If you’re using a Chromium-based browser like Chrome or
Edge, you can use the flexbox editor, which is available in
developer tools and can be seen in Figure 18-18. Locate the
element with display: flex and click the editor icon next to
the display property. A window will appear where you can
set the flexbox properties and see how they change the
element layout.

Figure 18-18. Flexbox editor in Chrome developer tools

Flex Items
Flex items are the child elements of a flex container and can
be blocks, text, images, or any other HTML elements. You can
apply various flex properties to them to specify how and
where they should display.

Flow Direction
In a flex container, there are two primary axes or directions of
flow: the main axis and the cross axis. The main axis is
defined by the flex direction (either row or column), and the
cross axis is perpendicular to the main axis. The flex-

direction property sets the direction of the main axis with
these supported values:

row

Items are laid out in a row from left to right (the default).

row-reverse

Items are laid out in a row from right to left.

column

Items are laid out in a column from top to bottom.

column-reverse

Items are laid out in a column from bottom to top.

The various values and the result of applying them can be seen
in Figure 18-19.

Figure 18-19. The flex-direction property

The following creates a flexbox in which items will flow from
top to bottom in columns, and the columns will flow from left
to right as each column fills:

flex-direction : column;

Justifying Content
The justify-content property determines how flex items are
spaced along the main axis. It can be used to distribute space
evenly, align items at the start or end of the container, or center
them. Centering helps distribute free space leftover when all
the flex items on a line are inflexible, or the items are flexible
but have reached their maximum size. Supported values are:

flex-start

Items are packed toward the start (default) taking into

account any reverse value.

flex-end

Items are packed toward the end taking into account any

reverse value.

start

Items are packed from the start ignoring any reverse.

end

Items are packed to the end ignoring any reverse.

center

Items are centered along the axis.

stretch

Auto-sized items are distributed evenly.

space-between

Items are evenly distributed along the axis, with the first

item at the start and last item at the end.

space-around

Items are evenly distributed along the axis with equal

space around each.

space-evenly

Items are distributed so that the spacing between each

item, and before the first and after the last item is equal.

The effect of applying some of these values to a column of
items can be seen in Figure 18-20.

Figure 18-20. Selected values of the justify-content property

The following rule equally spaces all items in rows (the
default axis), with no space before the first item and none after
the last item in each row:

justify-content : space-between;

Aligning Items
You can control the alignment of flex items along the cross
axis of a container with the align-items, while align-self

can be applied to individual elements to override the
container’s alignment. Supported values are:

stretch

Items are separated by equal spaces to fill the available

space.

flex-start

Items are aligned flush with the cross-start edge of the line.

flex-end

Items are aligned flush with the cross-end edge of the line.

baseline

Items are aligned such that their baselines align.

center

Items are centered along the flow axis.

start

Items are aligned toward the start of the axis.

end

Items are aligned toward the end of the axis.

Some of the common alignment options can be seen in
Figure 18-21.

The following centers a container’s items along the flow axis:

align-items : center;

The align-self property overrides the alignment of an
individual flex item. The following creates a flexbox in which

all its items have center alignment, followed by an individual
item from this flexbox with its alignment overridden to end:

#myflexbox {

 display : flex;

 align-items : center;

}

#myflexitem {

 align-self : end;

}

Figure 18-21. Showing some of the align-items values

Aligning Content

You can use the same values supplied to align-items for the
align-content property, which works similarly but acts
along the opposite axis to the direction of flow. The following
centers items in the default direction, stretching them along the
cross axis:

align-items : center;

align-content : stretch;

See “Flex Wrap” for an example using the flex-wrap
property.

Resizing Items
A group of three properties control how individual flex items
should expand or shrink to fit or fill the available space:

flex-grow

Specifies how much an item can grow relative to others.

The default value is 0, which indicates the default sizing

algorithm. Greater values indicate the relative amounts

items can grow by to fill available free space. The higher

the value the more space given.

flex-shrink

Determines how much an element can shrink when there’s

not enough space in the flexbox. The default value is 0,

which indicates the default sizing algorithm. Greater

values indicate the relative amounts items can shrink to fit

available space. The higher the value the more that item

will shrink.

flex-basis

Sets the initial length or height before any growth or

shrinking occurs. This can be any positive CSS size or

percentage, auto, max-content (preferred width), min-

content (minimum width), fit-content (fit maximally),

or content (size automatically). When omitted its value

will be 0.

As a shortcut, the main flex property supports three
additional values after it to set the flex-grow, flex-shrink,
and flex-basis (in that order) of all items to the same set of
values. The following will allow all elements to shrink or grow
as necessary by equal amounts, starting with a size of 100px:

flex : 1 1 100px;

Flex Wrap
By default, flex items try to fit in a single line, so the flex-
wrap property allows items to wrap onto new lines when
there’s not enough room. Supported values are:

nowrap

Forces all items into a single line, which may cause the

container to overflow (the default).

wrap

Items break across multiple rows (or columns).

wrap-reverse

Same as wrap, but the order of items is reversed.

Figure 18-22 contains the result of wrapping items as
combined with various alignment options.

Figure 18-22. Various values of the align-content property with flex-wrap
applied

The following allows items to wrap, appearing in their default
order:

flex-wrap : wrap;

You can combine both flex-direction and flex-wrap in the
single flex-flow property, as in the following, which flows a
column at a time, wrapping to the next column as necessary:

flex-flow : column wrap;

Order
The order property lets you change the display order of
individual flex items without changing their source order in
the HTML. Items with lower order values appear earlier in the
layout. In the following, the third item is made to appear
before the first two:

#item1 { order: 2; }

#item2 { order: 3; }

#item3 { order: 1; }

Flex items have a default order value of 0, so items with a
value greater than 0 are displayed after any that have not been
given an explicit order value. Full details on using flexbox
layout are available in the MDN.

In Figure 18-23 you can see how the last element will be
moved to the first position when you add order: -1 on it, and
how the second item will be moved to the end when order: 1
is applied on it.

Figure 18-23. Reordered elements using the order CSS property

Item Gaps

https://oreil.ly/-o8y7

To define the spacing between flex items you can use the gap
property (you also could see the older property name grid-
gap used extensively, but they both do the same thing), like
this:

gap : 10px;

grid-gap : 10px;

Figure 18-24 shows the elements have a gap when the
property is added.

Figure 18-24. Defining the spacing between items with the gap property

Or you can individually set the column or row gaps with the
column-gap and row-gap properties:

column-gap : 10px;

row-gap : 15px;

Alternatively you can use gap as a shorthand property to set
both values:

gap : 10px 15px;

CSS Grid

You can create two-dimensional grid layouts using CSS Grid
for organizing and aligning content on a web page, providing a
more flexible and precise way to design layouts compared to
older methods such as floats and positioning. Each grid
consists of a container and a number of grid items.

Grid Container
To create a grid layout, you first define a container element as
a grid container by setting its display property to grid or
inline-grid, like this:

#myelement {

 display : grid;

}

Similar to the flexbox editor, if you’re using Chrome or a
Chromium-based browser like Edge, you can locate the
element in the browser developer tools and edit the properties
using the grid editor, as seen in Figure 18-25.

Figure 18-25. Grid editor in Chrome developer tools

Grid Columns and Rows
Within a container you can define the structure of your grid by
specifying the number and size of columns and rows using
properties like grid-template-columns and grid-
template-rows. You define the size of columns and rows in
any standard CSS units, as in the following, which sets up
three columns with the middle one twice as wide as the others,
and two rows with fixed 100px and auto sizing:

grid-template-columns : 1fr 2fr 1fr;

grid-template-rows : 100px auto;

You can see the result and the grid itself in Figure 18-26.

Figure 18-26. Creating a grid with the grid-template-column and grid-
template-rows properties

Grid Flow
The flow direction of a grid is specified by the grid-auto-
flow property, which supports these values:

row

Items are placed, filling each row in turn as necessary

(default).

column

Items are placed, filling each column in turn as necessary.

dense

Attempts to fill in holes earlier in the grid, if smaller items

come up later.

row dense

Items are placed, filling each row and filling any earlier

holes.

column dense

Items are placed, filling each column and filling any earlier

holes.

The difference between row and column can be seen in
Figure 18-27; notice how the second item DIV changes its
position.

Figure 18-27. Setting the flow direction of the grid with the grid-auto-flow
property

For example, this rule sets up a dense grid:

grid-auto-flow: dense;

Placing Grid Items
By default, all direct children of a grid container become grid
items. You can have items placed automatically, or you can
explicitly place them in specific grid cells using properties
such as grid-column and grid-row. Figure 18-28 shows the
second item placed in the first row, spanning all three columns
and shifting all the other items to the second row.

The following places the item in the second column, spanning
across two rows and down two columns:

grid-column : 2 / span 2;

grid-row : 1 / span 2;

For precise item positioning you can use these four properties:

grid-row-start

Specifies a grid item’s start position

grid-row-end

Specifies a grid item’s end position

grid-column-start

Specifies a grid item’s start position within the grid column

grid-column-end

Specifies a grid item’s end position within the grid column

Figure 18-28. Placing the DIV into the first column, spanning all three, using the
grid-column property

You can also combine these properties into a single grid-
area shorthand property. For example, to make an item begin
on the second row down and the second column in, and for it
to extend to the fourth row down and fifth column across, you
can use a rule such as this:

grid-area : 2 / 2 / 5 / 6;

Grid Gaps
To define the spacing between grid columns and rows, you can
use the gap property (or the older alias grid-gap) as seen in
“Item Gaps”. Figure 18-29 shows the gap applied to the row of
grid items.

Figure 18-29. The grid item spacing set to 10 pixels with the gap property

Alignment
To align items both vertically and horizontally you can use the
justify-items and align-items properties, which support
these values:

normal

This is the default, as if no justification is set; it defaults to

the start edge.

start

Items are flush to each other at the start edge of the

container inline axis.

end

Items are flush to each other at the end edge of the

container inline axis.

center

Items are flush to each other centered on the inline axis.

left

Items are flush to each other at the start edge of the

container.

right

Items are flush to each other at the end edge of the

container.

space-between

Items are evenly distributed along the inline axis flush to

edges.

space-around

Items are evenly distributed along the inline axis—small

edge gap.

space-evenly

Items are evenly distributed along the inline axis—full

edge gap.

Figure 18-30 shows items vertically centered in two rows and
horizontally centered in two columns.

Figure 18-30. The grid items aligned with the justify-items and align-items
properties

The following pair of rules will center-justify all elements of a
container vertically, while left aligning them in a horizontal
plane:

justify-items : center;

align-items : left;

Full details on using CSS grid layout are available on the
MDN website. In Chapter 19 we’ll start accessing CSS
directly from JavaScript, but first try answering the following
questions to test your knowledge, because it will be handy in
Chapter 19 as well.

Questions
1. What do the CSS attribute selector operators ^=, $=,

and *= do?

2. What property do you use to specify the size of a
background image?

3. With which property can you specify the radius of a
border?

https://oreil.ly/G-JZu

4. How can you flow text over multiple columns?

5. Name the four functions you can use to specify CSS
colors.

6. How would you create a gray shadow under some
text, offset diagonally to the bottom right by 5 pixels,
with a blurring of 3 pixels?

7. How can you indicate with an ellipsis that text is
truncated?

8. How can you include a Google web font in a web
page?

9. What CSS declaration would you use to rotate an
object by 90 degrees?

10. How do you set up a transition on an object so that
when any of its properties are changed, the change
will transition linearly in a half-second?

11. How do you create a flexbox container?

12. How do you define how flex items are spaced along
the main axis of a flexbox?

13. How can you control the alignment of flex items
along the cross axis of a container?

14. Which two properties determine how much a flexbox
element can grow and shrink?

15. How can you change the order of elements in a
flexbox container?

16. How do you set up a CSS grid layout?

17. How do you specify the flow direction of a grid
container?

18. Which two properties can you use to place items into
a grid?

19. Which property allows you to set the gap spacing of a
grid, and what is the alternate older name of this
property?

20. Which two properties can you use to align grid items
vertically and horizontally?

See “Chapter 18 Answers” in the Appendix A for the answers
to these questions.

Chapter 19. Accessing
CSS from JavaScript

Now that you have a good understanding of the DOM and
CSS, you’ll learn in this chapter how to access both the DOM
and CSS directly from JavaScript, enabling you to create
highly dynamic, responsive websites.

I’ll also show you how to use time-based events so you can
create animations or provide any code that must continue
running (such as a clock). Finally, I’ll explain how you can
add new elements to or remove existing ones from the DOM
so you don’t have to precreate elements in HTML just in case
JavaScript might need to access them later.

Revisiting the getElementById
Function
To help with the examples in the rest of this book, I will
provide an abbreviated version of the getElementById
function (which returns an element object when passed an ID
name). This will allow for handling DOM elements and CSS
styles quickly and efficiently, without needing to include a
framework such as jQuery.

I’ve selected a name that is short to type yet it still explains
what the function does: it returns an object represented by the
ID passed to the function when called.

NOTE
It is highly unlikely you will use the following functions in
development code, because you likely will have a custom-made or
third-party framework to provide this functionality, plus a whole lot
more. But they serve to keep the examples in this book short and easy
to follow, as well as being a simple example of how new JavaScript
functions can be added.

The byId Function
You can see the bare-bones byId function in Example 19-1.
The abbreviated version alone saves 19 characters of typing
each time it’s called.

Example 19-1. The byId function

function byId(id)

{

 return document.getElementById(id)

}

The style Function
The partner function, called style, gives you easy access to
the style (or CSS) properties of an object, and is shown in
Example 19-2.

Example 19-2. The style function

function style(selector)

{

 return document.querySelector(selector).style

}

This function performs the task of returning the style
property (or subobject) of the element referred to. Because it
uses the document.querySelector function which uses a
CSS selector to find the element to return, you can pass an ID
(for example #myobject), class name (for example
.myclass), or any other valid CSS selector. If the document
has more than one element that matches, for example multiple

elements with class="myclass", the
document.querySelector function, and the style function,
it returns only the first element.

Let’s look at what’s going on here by taking a <div> element
with the ID of myobj and setting its text color to green, like
this:

<div id='myobj'>Some text</div>

<script>

 byId('myobj').style.color = 'green'

</script>

The preceding code will do the job, but it’s much simpler to
call the new style function, like this:

style('#myobj').color = 'green'

Remember that you have to prefix the ID with #. Otherwise,
the style function will be looking for a <myobj> element,
which is not what you want.

The by Function
So far I’ve provided two simple functions that make it easy for
you to access any element on a web page and any style
property of an element. Sometimes, though, you will want to
access more than one element at a time. You can do this by
assigning a CSS class name to each such element, like in these
examples, both of which employ the class myclass:

<div class='myclass'>Div contents</div>

<p class='myclass'>Paragraph contents</p>

If you want to access all elements on a page that use a
particular class, you can use the by function, shown in
Example 19-3, which uses the document.querySelectorAll
function to return an array containing all the objects that match

the selector provided. Similar to the
document.querySelector function, the selector must be a
valid CSS selector and can be a class name prefixed with a dot
(like .myclass), or a tag name (like td).

Example 19-3. The by function

function by(selector)

{

 return document.querySelectorAll(selector)

}

To use this function, simply call it as follows, saving the
returned array so that you can access each of the elements
individually as required or (more likely the case) en masse via
a loop:

myarray = by('.myclass')

Now you can do whatever you like with the objects returned,
such as (for example) setting their textDecoration style
property to underline:

for (i = 0 ; i < myarray.length ; ++i)

 myarray[i].style.textDecoration = 'underline'

This code iterates through the objects in myarray[] and then
each one’s style property, setting its textDecoration
property to underline.

Including the Functions
I use the byId and style functions in the examples for the
remainder of this chapter, as they make the code shorter and
easier to follow. Therefore, I have saved them in the file
functions.js (along with the by function, which I think you’ll
find extremely useful) in the Chapter 19 folder of the
accompanying archive of examples, freely downloadable from
the book’s example repository.

https://github.com/RobinNixon/lpmj7

You can include these functions in any web page by using the
following statement, preferably in its <head> section,
anywhere before any script that relies on calling them:

<script src='functions.js'></script>

The contents of functions.js are shown in Example 19-4.

Example 19-4. The functions.js file

function byId(id)

{

 return document.getElementById(id)

}

function style(selector)

{

 return document.querySelector(selector).style

}

function by(selector)

{

 return document.querySelectorAll(selector)

}

Accessing CSS Properties from
JavaScript
The textDecoration property I used in an earlier example
represents a CSS property normally hyphenated like this:
text-decoration. But since JavaScript reserves the hyphen
character for use as a mathematical operator, whenever you
access a hyphenated CSS property, you must convert the name
to follow the camelCase notation, that is, to omit the hyphen
and set the character immediately following it to uppercase.

Another example of this is the font-size property, which is
referenced in JavaScript as fontSize when placed after a
period operator, like this:

myobject.fontSize = '16pt'

An alternative is to be more long-winded and use the
setAttribute function, which does support (and in fact
requires) standard CSS property names, like this:

myobject.setAttribute('style', 'font-size:16pt')

Some Common Properties
Using JavaScript, you can modify any property of any element
in a web document, similar to using CSS. I’ve already shown
you how to access CSS properties using either the JavaScript
short form or the setAttribute function to use exact CSS
property names, so I won’t detail all of the hundreds of
properties. Rather, I’d like to show you how to access just a
few of the CSS properties as an overview of some of the
things you can do.

First, then, let’s look at modifying a few CSS properties from
JavaScript using Example 19-5, which loads in the three
earlier functions, creates a <div> element, and then issues
JavaScript statements within a <script> section of HTML to
modify some of its attributes (see Figure 19-1).

Example 19-5. Accessing CSS properties from JavaScript

<!DOCTYPE html>

<html>

 <head>

 <title>Accessing CSS Properties</title>

 <script src='functions.js'></script>

 </head>

 <body>

 <div id='object'>Div Object</div>

 <script>

 const o = style('#object')

 o.border = 'solid 1px red'

 o.width = '100px'

 o.height = '100px'

 o.background = '#eee'

 o.color = 'blue'

 o.fontSize = '15pt'

 o.fontFamily = 'Helvetica'

 o.fontStyle = 'italic'

y

 </script>

 </body>

</html>

Figure 19-1. Modifying styles from JavaScript

You gain nothing by modifying properties like this, because
you could just as easily have included some CSS directly, but
shortly we’ll be modifying properties in response to user
interaction—and then you’ll see the real power of combining
JavaScript and CSS.

Other Properties
JavaScript also opens up access to a very wide range of other
properties, such as the width and height of the browser
window and in-browser windows or frames, plus handy
information such as the parent window (if there is one) and the
history of URLs visited in a session.

All these properties are accessed from the window object via
the period operator (for example, window.name). Table 19-1
lists some of them and their descriptions.

Table 19-1. Some of the window properties

Property Description

closed Returns a Boolean value indicating
whether or not a window has been closed

document Returns the document object for the window

frameElement Returns the iframe element in which the
current window is inserted

frames Returns an array of all the frames and
iframes in the window

history Returns the history object for the window

innerHeight Sets or returns the inner height of a
window’s content area

innerWidth Sets or returns the inner width of a
window’s content area

length Returns the number of frames and iframes
in a window

localStorage Allows saving of key/value pairs in a web
browser

location Returns the location object for the window

name Sets or returns the name of a window

navigator Returns the navigator object for the
window

opener Returns a reference to the window that
created the window

Property Description

outerHeight Sets or returns the outer height of a
window, including toolbars and scroll bars

outerWidth Sets or returns the outer width of a
window, including toolbars and scroll bars

pageXOffset Returns the number of pixels the
document has been scrolled horizontally
from the left of the window

pageYOffset Returns the number of pixels the
document has been scrolled vertically
from the top of the window

parent Returns the parent window of a window

screen Returns the screen object for the window

screenLeft Returns the x coordinate of the window
relative to the screen

screenTop Returns the y coordinate of the window
relative to the screen

screenX Returns the x coordinate of the window
relative to the screen

screenY Returns the y coordinate of the window
relative to the screen

sessionStorage Allows saving of key/value pairs in a web
browser

self Returns the current window

top Returns the top browser window

There are a few points to note about some of these properties:

The history object cannot be read from (so you
cannot see where your visitors have been surfing).
But it supports the length property to determine how
long the history is, and the back, forward, and go
methods to navigate to specific pages in the history.

When you need to know how much space is available
in a current window of the web browser, just read the
values in window.innerHeight and
window.innerWidth. I’ve often used these values for
centering in-browser alert or “confirm dialog”
windows; today you can also use CSS Grid or flexbox
to achieve the same positioning.

The screen object supports the read-only properties
availHeight, availWidth, colorDepth, height,
pixelDepth, and width and is therefore great for
determining information about the user’s display.

NOTE
Many of these properties are invaluable when you’re targeting mobile
phones and tablet devices, as they will tell you exactly how much
screen space you have to work with, the type of browser being used,
and more.

These few items of information will get you started and
provide you with an idea of the many new and interesting
things you can do with JavaScript. Far more properties and
methods are available than can be covered in this chapter, but
now that you know how to access and use properties, all you
need is a resource listing them all. I recommend that you
check out the online docs as a good starting point.

Inline JavaScript

https://oreil.ly/RnPY3

Using <script> tags isn’t the only way you can execute
JavaScript statements; you can also access JavaScript from
within HTML tags, which makes for great dynamic
interactivity. For example, to add a quick effect when the
mouse passes over an object, you can use code such as that in
the tag in Example 19-6, which displays an apple by
default but replaces it with an orange when the mouse passes
over the object and restores the apple when the mouse leaves.
Note the properties have a prefix before the event name, so for
example when I want to add a handler for the mouseover
event, I’ll have to use the onmouseover property.

Example 19-6. Using inline JavaScript

<!DOCTYPE html>

<html>

 <head>

 <title>Inline JavaScript</title>

 </head>

 <body>

 <img src='apple.png'

 onmouseover="this.src='orange.png'"

 onmouseout="this.src='apple.png'">

 </body>

</html>

The this Keyword
In the preceding example, you see the this keyword in use. It
tells JavaScript to operate on the calling object, namely the
 tag. You can see the result in Figure 19-2, where the
mouse has yet to pass over the apple.

Figure 19-2. Inline mouse hover JavaScript example

Attaching Events to Objects in a Script
The preceding code is the equivalent of providing an ID to the
 tag and then attaching the actions to the tag’s mouse
events, like in Example 19-7.

Example 19-7. Noninline JavaScript

<!DOCTYPE html>

<html>

 <head>

 <title>Non-inline JavaScript</title>

 <script src='functions.js'></script>

 </head>

 <body>

 <script>

 const o = byId('object')

 o.onmouseover = function() { this.src = 'orange.png' }

 o.onmouseout = function() { this.src = 'apple.png' }

 </script>

 </body>

</html>

In the HTML section, this example gives the element an
ID of object, and it then proceeds to manipulate it separately

in the JavaScript section by attaching anonymous functions to
each event. The on property prefix is also used here.

Attaching to Other Events
Whether you’re using inline or separate JavaScript, you can
attach actions to several events, providing a wealth of
additional features to offer your users. Table 19-2 lists some
common events and details when they will be triggered. Note
that some events can be triggered on multiple different
elements and on multiple occasions. See the MDN for a full
list.

https://oreil.ly/SRrvP

Table 19-2. Events, elements they trigger on, and when

Event Element Occurs for example

abort HTMLMediaElement When a video’s loading
is stopped before
completion

blur Element When an element loses
focusa

change HTMLElement When any part of a form
has changed

click Element When an object is
clicked

dblclick Element When an object is
double-clicked

error Window When a JavaScript error
is encountered

focus Element When an element gets
focus

keydown Element When a key is being
pressed (including Shift,
Alt, Ctrl, and Esc)

keypress Element When a key is being
pressed (not including
Shift, Alt, Ctrl, and Esc)

keyup Element When a key is released

load HTMLMediaElement When an object has
loaded

Event Element Occurs for example

mousedown Element When the mouse button
is pressed over an
element

mousemove Element When the mouse is
moved over an element

mouseout Element When the mouse leaves
an element

mouseover Element When the mouse passes
over an element from
outside it

mouseup Element When the mouse button
is released

reset HTMLFormElement When a form is reset

resize Window When the browser is
resized

scroll Document When the document is
scrolled

select HTMLInputElement When some text is
selected

submit HTMLFormElement When a form is
submitted

a An element that has focus is one that has been clicked or otherwise
entered into, such as an input field.

WARNING
Make sure you attach events to objects that make sense. For example,
an object that is not a form will not respond to the onsubmit event.

Adding New Elements
With JavaScript, you are not limited to manipulating the
elements and objects supplied to a document in its HTML. In
fact, you can create objects at will by inserting them into the
DOM.

For example, suppose you need a new <div> element.
Example 19-8 shows one way you can add it to a web page.

Example 19-8. Inserting an element into the DOM

<!DOCTYPE html>

 <head>

 <title>Adding Elements</title>

 </head>

 <body>

 <p>This is a document with only this text in it.</p>

 <script>

 alert('Click OK to add an element')

 const newdiv = document.createElement('div')

 newdiv.id = 'NewDiv'

 document.body.appendChild(newdiv)

 newdiv.style.border = 'solid 1px red'

 newdiv.style.width = '100px'

 newdiv.style.height = '100px'

 newdiv.innerText = "I'm a new object inserted in the DOM"

 setTimeout(function()

 {

 alert('Click OK to remove the element')

 newdiv.parentNode.removeChild(newdiv)

 }, 1000)

 </script>

 </body>

</html>

Figure 19-3 shows this code being used to add a new <div>
element to a web document. First, the new element is created
with createElement; then the appendChild function is
called, and the element gets inserted into the DOM.

Figure 19-3. Inserting a new element into the DOM

After this, various properties are assigned to the element,
including some text for its inner content. And then, to make
sure the new element is instantly revealed, a timeout is set to
trigger one second in the future, delaying the running of the
remaining code to give the DOM time to update and display,
before popping up the alert about removing the element again.
See “Using setTimeout” for more on creating and using
timeouts.

This newly created element is exactly the same as if it had
been included in the original HTML and has all the same
properties and methods available.

NOTE
This is an alternative to adding an initially hidden <div> to your
HTML for this purpose, and it may be a better option if you display
multiple modals or display them infrequently.

Removing Elements
You can also remove elements from the DOM, including ones
that you didn’t insert using JavaScript; it’s even easier than

adding an element. It works like this, assuming the element to
remove is in the object element:

element.parentNode.removeChild(element)

This code accesses the element’s parentNode object so that it
can remove the element from that node. Then it calls the
removeChild method on that parent object, passing the object
to be removed.

Alternatives to Adding and Removing
Elements
Inserting an element is intended for adding totally new objects
into a web page. But if all you intend to do is hide and reveal
objects according to a mouseover or other event, don’t forget
there are a couple of CSS properties you can use for this
purpose, without taking such drastic measures as creating and
deleting DOM elements.

There are two ways to hide and unhide an object: one uses
visibility, while the other uses the display property. When
you want to make an element invisible but leave it in place
(and with all the elements surrounding it remaining in their
positions), you can simply set the object’s visibility
property to hidden, like this:

myobject.visibility = 'hidden'

And to redisplay the object, you can use:

myobject.visibility = 'visible'

With the display property, you can also collapse an element
to occupy zero width and height (with all the objects around it
filling in the freed-up space), like this:

myobject.display = 'none'

To restore the element to its original dimensions, you would
use:

myobject.display = 'block' // or for example 'flex' or 'grid'

And, of course, there’s always the innerHTML property, with
which you can change the HTML applied to an element, like
this, for example:

myelement.innerHTML = 'Replacement HTML'

Or to use the byId function outlined earlier:

byId('someid').innerHTML = 'New contents'

Or you can make an element seem to disappear, like this:

byId('someid').innerHTML = ''

NOTE
Don’t forget the other useful CSS properties you can access from
JavaScript, such as opacity for setting the visibility of an object to
somewhere between visible and invisible, or width and height for
resizing an object. And, of course, using the position property with
values of absolute, static, fixed, sticky, or relative, you can
even locate an object anywhere in (or outside) the browser window
that you like.

Time-based Events
JavaScript provides access to time-based events by which you
can ask the browser to call your code after a set period of time,
or even to keep calling it at specified intervals. This gives you
a means of handling background tasks such as asynchronous
communications or even things like animating web elements.

There are two types: setTimeout and setInterval, which
have accompanying clearTimeout and clearInterval
functions for canceling them.

Using setTimeout
When you call setTimeout, you pass it a function and a value
in milliseconds representing how long to wait before the code
should be executed, like this:

setTimeout(dothis, 5000)

Your dothis function might look like:

function dothis()

{

 alert('This is your wakeup alert!');

}

Be aware that you need to pass a function to the setTimeout
call, not the result of calling that function. Consider a code like
this; you can also run it in browser console for example:

setTimeout(alert('Hello'), 5000)

The alert pop-up will appear immediately, not after 5 seconds
like you’d probably expect. The reason is that
alert('Hello') is executed immediately and the return value
of the alert call is passed to setTimeout to be executed after
the specified timeout, but because alert doesn’t return
anything, nothing will be executed after the 5-second interval.

This is why the previous example uses setTimeout(dothis,
5000), without parentheses after dothis, and not
setTimeout(dothis(), 5000). Only when you provide a
function name without parentheses will its code be executed
when the timeout occurs.

Passing an arrow function
You don’t need to pass only a named function. You can also
provide an anonymous arrow function to the setTimeout
function, which will not be executed until the correct time. For
example:

setTimeout(() => alert('Hello!'), 5000)

In fact, you can provide as many lines of JavaScript code as
you need in that arrow function, like this:

setTimeout(() => {

 console.log('Starting');

 alert('Hello!')

}, 5000)

DON’T PASS A STRING
You can also pass a string value to the setTimeout function, but this
has been discouraged for many years as it presents an unnecessary
security risk and incurs a performance penalty. Always pass a named
or an arrow function, as shown in the previous examples.

Canceling a timeout
Once a timeout has been set up, you can cancel it if you
previously saved the value returned from the initial call to
setTimeout, like this:

timeoutID = setTimeout(dothis, 5000)

Armed with the value in timeoutID (sometimes called a
handle), you can cancel the execution at any point until its due
time:

clearTimeout(timeoutID)

When you do this, the timeout identifier is completely
forgotten, and the code assigned to it will not get executed.

Using setInterval
An easy way to set up regular execution is to use the
setInterval function. It works in the same way as
setTimeout, except that having executed after the interval you
specify in milliseconds, it will do so again after that interval
again passes, and so on forever, until you cancel it.

Example 19-9 uses this function to display a simple clock in
the browser, as shown in Figure 19-4.

Example 19-9. A clock created using setInterval

<!DOCTYPE html>

<html>

 <head>

 <title>Using setInterval</title>

 <script src='functions.js'></script>

 </head>

 <body>

 The time is: ...

 <script>

 setInterval(() => showtime(byId('time')), 1000)

 function showtime(object)

 {

 const date = new Date()

 object.innerText = date.toTimeString().substr(0,8)

 }

 </script>

 </body>

</html>

Figure 19-4. Maintaining the correct time with setInterval

Every time the arrow function is called, it sets the object date
to the current date and time with a call to Date:

var date = new Date()

Then the innerText property of the object passed to
showtime (namely, object) is set to the current time in hours,
minutes, and seconds, as determined by a call to the function

toTimeString. This returns a string such as 09:57:17
UTC+0530, which is then truncated to just the first eight
characters with a call to the substr function:

object.innerText = date.toTimeString().substr(0,8)

Using the function
To use this function, you first have to create an object whose
innerText property will be used for displaying the time, like
with this HTML:

The time is: ...

The value ... is simply there to show where and how the time
will display. It is not necessary as it will be replaced anyway.
Then, from a <script> section of code, call the setInterval
function, like this:

setInterval(() => showtime(byId('time')), 1000)

The script then passes an arrow function to setInterval
containing the following statement, which is set to execute
once a second (every 1,000 milliseconds):

showtime(byId('time'))

In the rare situation where somebody has disabled JavaScript
(which people sometimes do for security reasons), your
JavaScript will not run, and the user will just see the original
... placeholder.

Canceling an interval
To stop a repeating interval, when you first set up the interval
with a call to the function setInterval, you must note the
interval’s identifier (sometimes also called a handle), like this:

intervalID = setInterval(() => showtime(byId('time')), 1000)

You can stop the clock at any time by issuing this call:

clearInterval(intervalID)

You can even set up a timer to stop the clock after a certain
amount of time, like this:

setTimeout(() => clearInterval(intervalID), 10000)

This statement will execute the code in 10 seconds that will
clear the repeating intervals.

Using Time-Based Events for Animation
By combining a few CSS properties with a repeating code
execution, you can produce all manner of animations and
effects.

For example, the code in Example 19-10 moves a square shape
across the top of the browser window, all the time ballooning
in size, as shown in Figure 19-5; when left is reset to 0, the
animation restarts.

Example 19-10. A simple animation

<!DOCTYPE html>

<html>

 <head>

 <title>Simple Animation</title>

 <script src='functions.js'></script>

 <style>

 #box {

 position : absolute;

 background : orange;

 border : 1px solid red;

 }

 </style>

 </head>

 <body>

 <div id='box'></div>

 <script>

 let size = 0

 let left = 0

 setInterval(animate, 30)

 function animate()

 {

 size += 10

 left += 3

 if (size === 200) size = 0

 if (left === 600) left = 0

 const b = style('#box')

 b.width = size + 'px'

 b.height = size + 'px'

 b.left = left + 'px'

 }

 </script>

 </body>

</html>

Figure 19-5. This object slides in from the left while changing size

In the <head> section of the document, the box object is set to
a background color of orange with a border value of 1px
solid red, and its position property is set to absolute so
that the animation code that follows can position it precisely.

Then, in the animate function, the global variables size and
left are continuously updated and applied to the width,

height, and left style attributes of the box object (with 'px'
added after each to specify that the values are in pixels), thus
animating it at a frequency of once every 30 milliseconds. This
results in an animation rate of 33.33 frames per second
(1,000/30 milliseconds).

At this point you should be able to use JavaScript to
manipulate the document and the CSS to create interactive and
dynamic websites. In Chapter 20 we’ll introduce React, a
framework that takes all this a step further. Before moving
forward, try answering the following questions to refresh what
you’ve learned in this chapter.

Questions
1. Write a function that abbreviates DOM element

access by the object ID, using one of the two built-in
methods.

2. Name two ways to modify a CSS attribute of an
object.

3. Which properties provide the width and height
available in a browser window?

4. How can you make something happen when the
mouse passes both over and out of an object?

5. Which JavaScript function creates new elements, and
which appends them to the DOM?

6. How can you make an element (a) invisible and (b)
collapse to zero dimensions?

7. Which function creates a single event at a future
time?

8. Which function sets up repeating events at set
intervals?

9. What is the value of the position CSS property you
can use to release an element from its location in a
web page to enable it to be moved around?

10. What delay between events should you set (in
milliseconds) to achieve an animation rate of 50
frames per second?

See “Chapter 19 Answers” in the Appendix A for the answers
to these questions.

Chapter 20. Introduction
to React

When using JavaScript, HTML, and CSS to build dynamic
websites, there comes a time when the creation of the code
required to handle the frontend of your websites and apps can
become cumbersome and overly verbose, slowing the speed of
project development and potentially introducing common
bugs.

This is where frameworks come in. Of course, since 2006
there’s been jQuery to help us out, and consequently it’s still
installed on many production websites, although these days
JavaScript has grown sufficiently in scope and flexibility that
programmers need to rely on frameworks like jQuery a lot
less. Also, the technology continually improves, and now there
are a number of excellent options, such as Angular and, as
discussed here, my preferred favorite, React.

jQuery was designed to simplify HTML DOM tree traversal
and manipulation, as well as event handling, CSS animation,
and Ajax, but some programmers, such as the development
team at Google, felt it still wasn’t powerful enough, and they
came up with Angular JS in 2010, which evolved into Angular
in 2016, and which overtook jQuery around 2019.

Angular uses a hierarchy of components as its primary
architectural characteristic. Google’s massive AdWords
platform is powered by Angular, as are Forbes, Autodesk,
Indiegogo, UPS, and many others, and it is indeed extremely
powerful.

Facebook had a different vision and came up with React (also
known as React JS) as its framework for the development of
single-page or mobile applications, basing it around the JSX

extension (which stands for JavaScript XML). The React
Library (first developed in 2012) divides a web page into
single components, simplifying the development of the
interface required to serve all of Facebook’s advertising and
more, and it is now widely adopted by platforms across the
web, such as Dropbox, Cloudflare, Airbnb, Netflix, the BBC,
PayPal, and many more household names.

Clearly, both Angular and React were driven in their creation
and design by solid commercial decisions and were built to
handle complex and more sophisticated websites, where it was
felt that jQuery simply did not have the oomph the developers
were looking for. Interestingly, another contender, the Vue
framework (released in 2014), is still around and used almost
as much as Angular, so you may also encounter it on certain
projects.

Which is the best choice to learn more fully? Google Trends
shows React to be way ahead of all the others in popularity
and still growing (see Figure 20-1), while the other main
frameworks have all peaked. Therefore React is covered in
this book. By the way, please don’t confuse the similarly
named ReactPHP with React for JavaScript, as it is an entirely
separate and unconnected project.

Figure 20-1. The popularity of React compared to other frameworks 2004 to 2024
(see a larger version of this figure in color online)

https://oreil.ly/vhaq6
https://oreil.ly/vhaq6

What Is the Point of React Anyway?
React allows developers to create large web applications that
can easily handle and change data, without reloading the web
page that still reflects the application’s current state, even if it
changes. Its main raisons d’être are component-based
architecture, scalability, and simplicity in handling the view
layer of single-page web and mobile applications. It also
enables the creation of reusable UI components and uses a
virtual DOM to manage updates of the real DOM. Some
people say you can use it as the V in the MVC (Model, View,
Controller) architecture that separates applications into three
components.

Instead of developers having to come up with various ways to
describe transactions on interfaces, they can simply describe
the interfaces in terms of a final state, such that when
transactions happen to that state, React updates the UI for you.
The net results are faster and less buggy development, speed,
reliability, and scalability. Because React is a library and not a
framework, learning it is also quick, with just a few functions
to master. After that, it’s all down to your JavaScript skills.

The power of a framework such as React often becomes
evident only after the project gets bigger. For light projects,
React may not always be the best choice, especially if you are
already comfortable using jQuery (or another framework), for
example. One reason is the extra lines of code needed for set
up. But as soon as a project requires massive scaling, with
code that many developers can instantly comprehend and work
on collaboratively, and with tried, tested, and debugged
modules ready to quickly import, then a framework/library
such as React can become invaluable.

Accessing the React Files
React is open source and entirely free to use, and there are a
number of services on the web that will serve up the latest (or

any) version for you free of charge, so using it can be as easy
as placing a couple of extra lines of code in your web page.

Before examining what you can do with React and how to use
it, here’s how you include it in a web page, pulling the files
from unpkg.com:

<script

 src="https://unpkg.com/react/umd/react.development.js">

</script>

<script

 src="https://unpkg.com/react-dom/umd/react-

dom.development.js">

</script>

Ideally, these lines should be placed within the <head>...
</head> section of a page to ensure they are loaded before the
body section. They load in the development versions of React
and React DOM (a package used to access and modify the real
DOM) to aid you with development and debugging. On a
production website, you should replace the word development
with production in these URLs, and, to speed up transfer,
you can even change development to production.min,
which will call up compressed versions of the files, like this:

<script

 src="https://unpkg.com/react/umd/react.production.min.js">

</script>

<script

 src="https://unpkg.com/react-dom/umd/react-

dom.production.min.js">

</script>

For ease of access and to make the code as brief as possible, I
have downloaded the latest (version 18 as I write) of the
uncompressed development files to the accompanying archive
of examples for this book (on GitHub) so that all the examples
will load locally and look like this:

<script src="react.development.js"></script>

<script src="react-dom.development.js"></script>

https://github.com/RobinNixon/lpmj7

Now that React is available to your code, we pull in the Babel
JSX extension, which allows you to include XML text directly
within JavaScript, making your life much easier.

USING REACT WITHOUT JSX
JSX is technically not necessary for React development, but unless
there is a very specific reason not to use JSX, this is not recommended
and would be an advanced approach.

Including babel.js
The Babel JSX extension adds the ability for you to use XML
(very similar to HTML) directly within your JavaScript,
saving you from having to call a function each time. In
addition, on browsers that have earlier versions of
ECMAScript (the official standard of JavaScript) than 6, Babel
upgrades them to handle ES6 syntax, so it provides two great
benefits in one go.

Once again you can pull the file needed from the unpkg.com
server, like this:

<script src="https://unpkg.com/babel-standalone/babel.min.js">

</script>

You require only the one minimized version of the Babel code
on either a development or a production server. For
convenience I have also downloaded the latest version to the
companion archive of example files, so examples in this book
load locally and look like this:

<script src="babel.min.js"></script>

Now that we can access the React files, let’s get on with doing
something with them.

NOTE
This chapter is intended to teach you the basics of using React to give
you a clear understanding of how and why it works and to provide you
with a good starting point to take your React development further.
Indeed, some of the examples in this chapter are based on (or similar
to) examples you can find in the official documentation at the React
website so that, should you wish to learn React in greater depth, you
can visit the website and will be off to a running start. You can also
browse other titles on React available on the O’Reilly Learning
Platform.

Our First React Project
Rather than teaching you all about React and JSX before
actually setting about coding, let’s approach it by jumping
right into our first React project, as shown in Example 20-1,
the result of which is to simply display the text “By Jeeves, it
works!” in the browser.

Example 20-1. Our first React project
<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>First React Project</title>

 <script src="react.development.js"></script>

 <script src="react-dom.development.js"></script>

 <script src="babel.min.js"></script>

 <script type="text/babel">

 function One() {

 return <p>By Jeeves, it works!</p>

 }

 ReactDOM.render(<One />, document.getElementById('div1'))

 </script>

 </head>

 <body>

 <div id="div1" style='font-family:monospace'></div>

 </body>

</html>

This is a standard HTML document, which loads in the two
React scripts and the Babel script before opening an inline

https://react.dev/
https://www.oreilly.com/search/?q=react

script. Here is where we first need to pay attention because,
instead of not specifying a type to the script tag or using
type="application/javascript", the tag is given
type="text/babel". The browser itself will ignore the tag
because it doesn’t support the type. But the Babel preprocessor
will run through the script, add ES6 functionality to it if
necessary, and replace any XML encountered with JavaScript
function calls. Only then the contents of the script, which is
now a common JavaScript, will be executed.

Within the script, a new function, One, is created, which
returns the following JSX (not a string, it’s not enclosed in
quotes):

<p>By Jeeves, it works!</p>

Finally, within the script, the render function of the ReactDOM
class is called, passing it the name of the function that returns
the JSX and the element in the body of the document, which
has been given the ID of div1. The result is to render the JSX
into the div, which causes the browser to automatically update
and display the contents, which looks like this:

By Jeeves, it works!

Immediately you should see how including the JSX within the
JavaScript makes for code that is much easier and faster to
write as well as easier to understand. Without the JSX
extension, you would have to do all this using a sequence of
JavaScript function calls.

NOTE
React treats components starting with lowercase letters as DOM tags.
Therefore, for example, <div /> represents an HTML <div> tag, but
<One /> represents a component and requires One to be in scope—you
cannot use one (with a lowercase o) in the previous example and
expect your code to work, as the component needs to start with
uppercase and so does any reference to it.

Using a Class Instead of a Function
You may encounter existing or legacy code that uses classes
instead of functions as in Example 20-2; however, classes are
not recommended for new development. The main reasons to
use functions are simplicity, ease of use, and faster
development.

Example 20-2. Using a class instead of a function
<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>First React Project</title>

 <script src="react.development.js"></script>

 <script src="react-dom.development.js"></script>

 <script src="babel.min.js"></script>

 <script type="text/babel">

 class Two extends React.Component

 {

 render()

 {

 return <p>And this, by Jove!</p>

 }

 }

 ReactDOM.render(<Two />, document.getElementById('div2'))

 </script>

 </head>

 <body>

 <div id="div2" style='font-family:monospace'></div>

 </body>

</html>

The class, named Two, extends React.Component and contains
a method called render that returns the JSX. The result
displayed in the browser is:

And this, by Jove!

EXAMPLES WITH ONLY THE SCRIPT AND
RELEVANT ELEMENTS

In the examples that follow, for the sake of brevity and
simplicity, I will show only the contents of the Babel script
and the body of the document as if they were both in the
body (which works just the same), but the examples in the
companion archive will be complete. So they will look like
this from now on:

<script type="text/babel">

 function One() {

 return <p>By Jeeves, it works!</p>

 }

 ReactDOM.render(<One/>,

 document.getElementById('div1'))

</script>

<div id="div1"></div>

Pure and Impure Code: A Golden Rule
When you write a normal JavaScript function, it is possible to
write either pure or impure code. Pure function code does not
change its inputs, doesn’t modify global variables, and doesn’t
have any other side effects, as in the following, which returns
a value calculated from its arguments:

function mult(m1, m2) {

 return m1 * m2

}

However, the following function is considered impure because
it modifies an argument and absolutely should not be used as,
or turned into, a React component:

function assign(obj, val) {

 obj.value = val

}

Expressed as a golden rule, all React components must act like
pure functions with respect to their props, as explained in
“Props and Components”. Unfortunately, React has no
mechanism to prevent you from using impure functions as
components. So be careful; otherwise, the function may not
work as designed.

Using Both a Class and a Function
You can, of course, use functions and classes pretty much
interchangeably, as in Example 20-3.

Example 20-3. Using both classes and functions
<script type="text/babel">

 function One() {

 return <p>By Jeeves, it works!</p>

 }

 class Two extends React.Component

 {

 render()

 {

 return <p>And this, by Jove!</p>

 }

 }

 ReactDOM.render(<One />, document.getElementById('div1'))

 ReactDOM.render(<Two />, document.getElementById('div2'))

</script>

<div id="div1" style="font-family:monospace"></div>

<div id="div2" style="font-family:monospace"></div>

Here there is a function named One and class named Two,
which are the same as in the previous two examples. The
result of running this displays in the browser as:

By Jeeves, it works!

And this, by Jove!

Props and Components
A great way to introduce you to what React calls props and
components is to build a simple welcome page in which a

name is passed to the script and then displayed. Example 20-4
shows one way to do that. Components let you split the UI into
separate, reusable parts and work with each part in isolation.
They are similar to JavaScript functions and accept arbitrary
inputs that are called props (short for properties), returning
React elements that describe how elements should appear in
the browser.

Example 20-4. Passing props to a function
<script type="text/babel">

 function Welcome(props) {

 return <h1>Hello, {props.name}</h1>

 }

 ReactDOM.render(<Welcome name='Robin' />,

 document.getElementById('hello'))

</script>

<div id="hello" style='font-family:monospace'></div>

In this example, the Welcome function receives an argument of
props, which stands for properties, and within its JSX return
statement a section inside curly braces fetches the name
property from the props object, like this:

return <h1>Hello, {props.name}</h1>

props is an object in React, and next you will see one way to
populate it with a property.

NOTE
Curly braces let you embed expressions within JSX. In fact, you can
place any JavaScript expression inside these curly braces and it will be
evaluated (with the exception of for and if statements; however,
they’re not expressions and cannot be evaluated).

So, in place of props.name in this example, you could enter 76 / 13
or "decode".substr(-4) (which would evaluate to the string
"code"). In this instance, however, the property name is retrieved from
the props object and returned.

Finally, the render method is passed the name of the Welcome
function, followed by assigning the string value 'Robin' to its

name property:

ReactDOM.render(<Welcome name='Robin' />,

document.getElementById('hello'))

React then renders the Welcome component (which is simply
the invocation of the Welcome function), passing it {name:
'Robin'} in props. Welcome then evaluates and returns
<h1>Hello, Robin</h1> as its result, which is then rendered
into the div called hello and displayed in the browser like
this:

 Hello, Robin

To make your code tidier you can also, if you wish, first create
an element containing the XML to pass to render:

const elem = <Welcome name='Robin' />

ReactDOM.render(elem, document.getElementById('hello'))

The Differences Between Using a Class and a
Function
The most obvious difference between using a class and a
function in React is the syntax. A function is simple JavaScript
(possibly incorporating JSX), which can accept a props
argument and return a component element.

A class, however, is extended from React.Component and
requires a render method to return a component. But this
additional code does come with benefits, in that a class allows
you to use setState in your component, enabling (for
example) the use of timers and other stateful features.
Functions in React are called functional stateless components.

In essence, you can do pretty much everything in React using
functions, especially if you use React hooks, which replace
classes and come with much less additional code. You can
learn about hooks in the React documentation.

https://oreil.ly/rwcFy

React State and Life Cycle
Let’s assume you want a ticking clock to be displayed on your
web page (an ordinary digital one for simplicity’s sake). If you
are using stateless code this is not an easy matter, but if you set
up your code to retain its state, then the clock counter can be
updated once per second and the time rendered equally as
often. This is where you would use a class in React rather than
a function. So let’s build such a clock:

<script type="text/babel">

 class Clock extends React.Component

 {

 constructor(props)

 {

 super(props)

 this.state = {date: new Date()}

 }

 render()

 {

 return {this.state.date.toLocaleTimeString()}

 }

 }

 ReactDOM.render(<Clock />,

document.getElementById('the_time'))

</script>

<p style='font-family:monospace'>The time is: <span

id="the_time"></p>

This code assigns the result returned from calling the
Date function to the state property of the constructor’s this
object, which is props. The JSX content will now be rendered
whenever the class’s render function is called, and, as long as
it is rendered into the same DOM node, only a single instance
of the class will be used.

NOTE
Did you see the call to super at the start of the constructor? By
passing it props, it is now possible to refer to props using the this
keyword within the constructor, without which call you could not.

However, as things stand, the time will be displayed only
once, and then the code will stop running. So now we need to
set up some time-based code to keep the date property
updated, which is done by adding a life-cycle method to the
class by mounting a timer using componentDidMount, like
this:

componentDidMount()

{

 this.timerID = setInterval(() => this.tick(), 1000)

}

We aren’t quite there yet, as we still need to write the tick
function, but first, to explain the preceding: mounting is the
term React uses to describe the action of adding nodes to the
DOM. A class’s componentDidMount method is always called
if the component is mounted successfully, so it’s the ideal
place to set up a timer, and, indeed, in the preceding code,
this.timerID is assigned the ID returned by calling the
setInterval function, passing it the method this.tick to be
called every 1,000 milliseconds (once per second).

When a timer is mounted, we must also provide a means for it
to be unmounted. In this case when the DOM produced by
Clock is removed (that is, the component is unmounted), the
method and code we use to stop the timer looks like this:

componentWillUnmount()

{

 clearInterval(this.timerID)

}

Here, componentWillUnmount is called by React when the
DOM is removed; thus, this is where we place the code to

clear the interval stored in this.timerID, which instantly
stops tick from being called.

The last piece of the puzzle is the time-based code to be called
every 1,000 milliseconds, which is in the method tick:

tick()

{

 this.setState({date: new Date()})

}

Here the React setState function is called to update the value
in the state property with the latest result of calling the Date
function once every second.

All this code together in one example is shown in Example 20-
5.

Example 20-5. Building a clock in React
<script type="text/babel">

 class Clock extends React.Component

 {

 constructor(props)

 {

 super(props)

 this.state = {date: new Date()}

 }

 componentDidMount()

 {

 this.timerID = setInterval(() => this.tick(), 1000)

 }

 componentWillUnmount()

 {

 clearInterval(this.timerID)

 }

 tick()

 {

 this.setState({date: new Date()})

 }

 render()

 {

 return {this.state.date.toLocaleTimeString()}

 }

 }

 ReactDOM.render(<Clock />, document.getElementById('the_time'))

</script>

<p style='font-family:monospace'>The time is:

</p>

With the Clock class now complete with a constructor, a timer
starter and stopper, a method to update the state property
using the timer, and a render function, all that is needed is to
call the render method to get the whole thing ticking away, as
smooth as clockwork! The result looks like this in the browser:

The time is: 12:17:21

The clock is automatically updated to screen each time the
setState function is called, because components are re-
rendered by this function, so you don’t have to worry about
doing this with your code.

NOTE
After the initial state setup, setState is the only legitimate way to
update state, because simply modifying a state directly will not cause a
component to be re-rendered. Remember that the only place you can
assign this.state is in the constructor. React can bundle multiple
setState calls into a single update.

Events in React
In React, events are named using camelCase, and you use JSX
to pass a function as the event handler. Also, React events do
not work in exactly the same way as native JavaScript events,
in that your handlers are passed instances of a cross-browser
wrapper around the browser’s native event called
syntheticEvent. The reason for this is that React normalizes
events to have consistent properties across different browsers.
Should you need access to the browser event, however, you
can always use the nativeEvent attribute to reach it.

To illustrate the use of events in React, Example 20-6 shows
an onClick event that removes or redisplays some text when
clicked.

Example 20-6. Setting up an event
<script type="text/babel">

 class Toggle extends React.Component

 {

 constructor(props)

 {

 super(props)

 this.state = {isVisible: true}

 this.handleClick = this.handleClick.bind(this)

 }

 handleClick()

 {

 this.setState(state => ({isVisible: !state.isVisible}))

 }

 render()

 {

 const show = this.state.isVisible

 return (

 <div>

 <button onClick={this.handleClick}>

 {show ? 'HIDE' : 'DISPLAY'}

 </button>

 <p>{show ? 'Here is some text' : ''}</p>

 </div>

)

 }

 }

 ReactDOM.render(<Toggle />, document.getElementById('display'))

</script>

<div id="display" style="font-family:monospace"></div>

In the constructor of a new class called Toggle, an isVisible
property is set to true and assigned to this.state:

this.state = {isVisible: true}

Then an event handler called handleClick is attached to this
using the bind method:

this.handleClick = this.handleClick.bind(this)

With the constructor finished, the handleClick event handler
is next. This has a single-line command to toggle the state of
isVisible between true and false:

this.setState(state => ({isVisible: !state.isVisible}))

Last, there’s the call to the render method, which returns two
elements wrapped inside a <div>. It’s done this way because
render can return only a single component (or XML tag), so
the two elements are wrapped into a single element to satisfy
that requirement.

The elements returned are a button, which displays either the
text DISPLAY if the following text is currently hidden (that is,
isVisible is set to false) or HIDE if isVisible is set to
true and the text is currently visible. Following this button,
some text is displayed underneath if isVisible is true;
otherwise, nothing is shown (in fact, an empty string is
returned, which is the same thing).

To decide what button text to display, or whether or not to
show the text, the ternary operator is used, which you will
recall follows the syntax:

 expression ? return this if true : or this if false.

This is done by the single-word expression of the variable
show (which retrieved its value from
this.state.isVisible). If it evaluates to true, then the
button shows HIDE and the text is displayed; otherwise, the
button shows DISPLAY and the text is not displayed. When
loaded into the browser, the result looks like this (where
[HIDE] and [DISPLAY] are buttons):

[HIDE]

Here is some text

When the button is pressed, it changes to just the following:

[DISPLAY]

USING JSX OVER MULTIPLE LINES
Although you can split your JSX across many lines to improve
readability, as in the previous example, the one thing you may not do
is move the parenthesis following the return command down a line
(or anywhere else). It must stay in its place following return or
syntax errors will be reported. The closing parenthesis may, however,
appear where you wish.

Inline JSX Conditional Statements
In JSX there is a way to return only XML if a condition is
true, thus enabling conditional rendering. This is achieved
because true && expression evaluates to expression,
while false && expression evaluates to false.

Therefore, for example, Example 20-7 sets up two variables as
if they are in part of a game. this.highScore is set to 90, and
this.currentScore is set to 100.

Example 20-7. A conditional JSX statement
<script type="text/babel">

 class Setup extends React.Component

 {

 constructor(props)

 {

 super(props)

 this.highScore = 90

 this.currentScore = 100

 }

 render()

 {

 return (

 <div>

 {

 this.currentScore > this.highScore &&

 <h1>New High Score</h1>

 }

 </div>

)

 }

 }

 ReactDOM.render(<Setup />, document.getElementById('display'))

</script>

<div id='display' style='font-family:monospace'></div>

In this instance, if this.currentScore is greater than
this.highScore, then the h1 element is returned; otherwise,
false is returned. The result of the code looks like this in the
browser:

 New High Score

Of course, in an actual game you would then proceed to set
this.highScore to the value in this.currentScore and
would probably do a few other things, too, before going back
to the game code.

So, wherever something should be displayed only upon a
condition being true, the && operator is a great way to achieve
this. And, of course, you have just seen (near the end
of “Events in React”) how you can also create an
if...then...else block in JSX using a ternary (? :)
expression.

NOTE
React will not render the literal falsy values undefined, null, or
false, but it will render the numeric value 0 even though the value 0
is also falsy. Consider the following code that will render “non-zero”
when x is, for example, 5:

{x && <p>non-zero</p>}

But it will render 0 when x is zero, which may not be what you want.
If you want React to render nothing instead of 0, the easiest way to do
that is to make sure the expression evaluates to literal false:

{x !== 0 && <p>non-zero</p>}

Using Lists and Keys
Displaying lists using React is a breeze. In Example 20-8 the
array cats contains a list of four types of cat. This is then
extracted in the following line of code using the map function,
which iterates through the array, returning each item in turn in
the variable cat. This results in each iteration being embedded
in a pair of ... tags and then appended to the
listOfCats string.

Example 20-8. Displaying a list
<script type="text/babel">

 const cats = ['lion', 'tiger', 'cheetah', 'lynx']

 const listOfCats = cats.map((cat) => {cat})

 ReactDOM.render({listOfCats},

document.getElementById('display'))

</script>

<div id='display' style='font-family:monospace'></div>

Finally, ReactDOM.render is called, embedding listOfCats
within a pair of ... tags; the result displays like
this:

• lion

• tiger

• cheetah

• lynx

Unique Keys
If your JavaScript console was open when you ran
Example 20-8 (press Ctrl-Shift-J or Option-Command-J on a
Mac), you may have noticed the warning message “Each child
in a list should have a unique ‘key’ prop.”

Although it’s not required, React works best when you supply
a unique key for each sibling list item, which helps it to find
references to the appropriate DOM nodes and, when you make
a small change, allows for making minor adjustments to the

DOM, rather than requiring re-rendering of larger sections.
Example 20-9 shows how to provide such a key.

Example 20-9. Using unique keys
<script type="text/babel">

 const cats = ['lion', 'tiger', 'cheetah', 'lynx']

 const listOfCats = cats.map((cat, i) => <li key={i}>{cat})

 ReactDOM.render({listOfCats},

document.getElementById('display'))

</script>

<div id='display' style='font-family:monospace'></div>

In this example, the arrow function passed to map has a second
parameter called i in which the array index will be passed and
used for the item key. The displayed output is the same as the
previous example, but if you would like to see the keys (just
out of interest), you can change the contents of the li element
from {cat} to {i + ' ' + cat}, and you will see the
following displayed:

• 0 lion

• 1 tiger

• 2 cheetah

• 3 lynx

But what is the point of this, you may ask? Well, consider the
case of the following list structure:

 // Cities In Europe

 Birmingham

 Paris

 Milan

 Vienna

 // Cities in the USA

 Cincinnati

 Paris

 Chicago

 Birmingham

Here are two sets of lists, each with four unique siblings, but
between the lists, both the city names of “Birmingham” and
“Paris” are shared at the same level of nesting. When React
performs certain reconciliation actions (after reordering or
modifying an element perhaps), there are instances when you
can gain speed and possibly avoid problems when sibling list
items at the same level share the same values. To do this you
can provide unique keys for all siblings, which, to React, looks
like this:

 // Cities In Europe

 <li key="1">Birmingham

 <li key="2">Paris

 <li key="3">Milan

 <li key="4">Vienna

 // Cities in the USA

 <li key="5">Cincinnati

 <li key="6">Paris

 <li key="7">Chicago

 <li key="8">Birmingham

Now there is no possibility of confusing Paris in Europe with
Paris in the USA (or at least of having to work harder to locate
and possibly re-render the correct DOM node), as each array
element has a different unique ID for React.

NOTE
Don’t worry too much about why you are creating these unique keys.
Just remember that React works best when you do so, and a good rule
to follow is that elements within a map call will need keys. Also, you
can reuse your keys for different sets of siblings that are not related in
any way. However, you may not have to create your own keys because
the data you are working with could well supply them for you, such as
book ISBN numbers. As a last resort, you can simply use the index of
an item as its key, but reorders could be slow, and you could encounter
other issues, so creating your own keys to control what they contain is
usually the best option.

Handling Forms

In React, <input type='text'>, <textarea>, and <select>
all work similarly because React’s internal state becomes what
is known as the “source of truth,” and these components are
therefore called controlled.

With a controlled component, the input’s value is always
driven by the React state. This does mean that you need to
write a bit more code in React, but the end benefit is that you
can then pass values to other UI elements or access them from
event handlers.

Normally, without React or any other framework or library
loaded, form elements maintain their own state, which is
updated based on input received from the user. In React, the
mutable state is typically kept in the state property of
components and should only be updated using the setState
function.

Using Text Input
Let’s look at these three input types, starting with a simple text
input:

<form>

 Name: <input type='text' name='name'>

 <input type='submit'>

</form>

This code requests a string of characters to be input, which is
then submitted when the submit button is clicked (or the Enter
or Return key pressed). Now let’s change this to a controlled
React component (Example 20-10).

Example 20-10. Using text input
<script type="text/babel">

 class GetName extends React.Component

 {

 constructor(props)

 {

 super(props)

 this.state = {value: ''}

 this.onChange = this.onChange.bind(this)

 this.onSubmit = this.onSubmit.bind(this)

 }

 onChange(event)

 {

 this.setState({value: event.target.value})

 }

 onSubmit(event)

 {

 alert('You submitted: ' + this.state.value)

 event.preventDefault()

 }

 render()

 {

 return (

 <form onSubmit={this.onSubmit}>

 <label>

 Name:

 <input type="text" value={this.state.value}

 onChange={this.onChange} />

 </label>

 <input type="submit" />

 </form>

)

 }

 }

 ReactDOM.render(<GetName />, document.getElementById('display'))

</script>

<div id='display' style='font-family:monospace'></div>

Let me take you through this part by part. First we create a
new class called GetName, which will be used to create a form
that will prompt for a name to be entered. This class contains
two event handlers called onChange and onSubmit. These
local handlers are set to override the standard JavaScript
handlers of the same named events by using the calls to bind
in the constructor, which is also the place the value in value is
initialized to the empty string.

When called on the change event, the new onChange handler
calls the setState function to update value whenever the
input is changed, so that value is always kept up-to-date with
the contents in the input field.

When the submit event is triggered, it is handled by the new
onSubmit handler, which in this instance issues a pop-up
alert window so that we can see it has worked. Because we
are dealing with the event and not the system, the event is then
prevented from bubbling through to the system by calling
preventDefault.

Finally, the render method contains all the HTML code to be
rendered into the display <div>. Of course, we use HTML
formatted as XML to do this, as that is what Babel expects
(namely JSX syntax). In this instance, it simply requires the
additional self-closing of the input elements with />.

NOTE
We have not globally overridden the onChange and onSubmit events,
because we have bound events issued by the rendered code only to
local event handlers within the GetName class, so it is safe to use the
same names for our event handlers, which helps make our code’s
purpose more immediately obvious to other developers. But if there is
ever any doubt, you might prefer to use different names for your
handlers, such as actOnSubmit, etc.

So, as you should see by now, this.state.value will always
reflect the state of the input field because, as noted earlier,
with a controlled component, value is always driven by the
React state.

Using textarea
One of the ideas behind using React is to maintain cross-
browser control over the DOM for quick and simple access as
well as to streamline and simplify the development process.
By using controlled components, we are in control at all times
and can make inputting data of all types work in similar ways.

In Example 20-11, the previous example has been modified to
use a <textarea> element for input.

Example 20-11. Using textarea

<script type="text/babel">

 class GetText extends React.Component

 {

 constructor(props)

 {

 super(props)

 this.state = {value: ''}

 this.onChange = this.onChange.bind(this)

 this.onSubmit = this.onSubmit.bind(this)

 }

 onChange(event)

 {

 this.setState({value: event.target.value})

 }

 onSubmit(event)

 {

 alert('You submitted: ' + this.state.value)

 event.preventDefault()

 }

 render()

 {

 return (

 <form onSubmit={this.onSubmit}>

 <label>

 Enter some text:

 <textarea rows='5' cols='40' value={this.state.value}

 onChange={this.onChange} />

 </label>

 <input type="submit" />

 </form>

)

 }

 }

 ReactDOM.render(<GetText />, document.getElementById('display'))

</script>

<div id='display' style='font-family:monospace'></div>

This code is very similar to the text input example, with a few
simple changes: this class is now called GetText, the text
input in the render method is replaced with a <textarea>
element that has been set to 40 columns wide by 5 rows high,
and a couple of
 elements have been added for formatting.
And that’s it—nothing else has required changing to enable us

to have full control over the <textarea> input field. As with
the previous example, this.state.value will always reflect
the state of the input field.

Of course, this type of input supports the use of Enter or
Return to input carriage returns into the field, so now the input
can only be submitted by clicking the button.

Using select
Before showing how to use <select> in React, let’s first look
at a typical snippet of HTML code that offers a few countries
from which the user must choose, with USA being the default
selection:

<select>

 <option value="Australia">Australia</option>

 <option value="Canada" >Canada</option>

 <option value="UK" >United Kingdom</option>

 <option selected value="USA" >United States</option>

</select>

In React this needs to be handled slightly differently because it
uses a value attribute on the select element instead of the
selected attribute applied to an option sub-element, as in
Example 20-12.

Example 20-12. Using select
<script type="text/babel">

 class GetCountry extends React.Component

 {

 constructor(props)

 {

 super(props)

 this.state = {value: 'USA'}

 this.onChange = this.onChange.bind(this)

 this.onSubmit = this.onSubmit.bind(this)

 }

 onChange(event)

 {

 this.setState({value: event.target.value})

 }

 onSubmit(event)

 {

 alert('You selected: ' + this.state.value)

 event.preventDefault()

 }

 render()

 {

 return (

 <form onSubmit={this.onSubmit}>

 <label>

 Select a country:

 <select value={this.state.value}

 onChange={this.onChange}>

 <option value="Australia">Australia</option>

 <option value="Canada" >Canada</option>

 <option value="UK" >United Kingdom</option>

 <option value="USA" >United States</option>

 </select>

 </label>

 <input type="submit" />

 </form>

)

 }

 }

 ReactDOM.render(<GetCountry />,

document.getElementById('display'))

</script>

<div id='display' style='font-family:monospace'></div>

Once again you will see that very little has changed in this
example other than the new class name of GetCountry, that
this.state.value is assigned the default value of 'USA',
and that the input type is now a <select> but without a
selected attribute.

Just as with the previous two examples,
this.state.value always reflects the state of the input.

React Native
React also has a companion product called React Native. With
it you can create full-blown applications for both iOS and
Android phones and tablets, just using the JSX extended

JavaScript language and without needing to understand Java or
Kotlin (for Android) or Objective-C or Swift (for iOS).

Full details and explanations of how to do all this and have
your apps up and running on a wide range of mobile devices
are beyond the scope of this book, but you can work through
the tutorial on the React Native website, noting the differences
between building apps on Windows and on macOS.

You’ve learned the basics of how to set up and use React, but
you can do a great deal more with it (especially if you intend
to build React Native apps with it) that is sadly beyond the
scope of this book. To continue your React journey, you can
visit the react.dev web page, where you can review some of
the things discussed here before moving on to applying CSS
styles to elements and many even more powerful features.

Remember that you can download all the samples from this
chapter (and this book as a whole) on GitHub.

So, with React now in your toolkit (at least enough to get you
up and running), let’s move to Chapter 21 and all the goodies
that HTML brings. But first, try answering the following
questions to test your React knowledge.

Questions
1. What are the main two ways you can incorporate the

React scripts in your web page?

2. How is XML incorporated into JavaScript for use
with React?

3. Instead of <script
type="application/javascript">, what value for
type should you use for your JSX JavaScript code?

4. What are two different ways you can extend React to
your code?

https://oreil.ly/_3dKs
https://reactnative.dev/
https://react.dev/learn
https://oreil.ly/tPttU
https://github.com/RobinNixon/lpmj7

5. In React, what is meant by pure and impure code?

6. How does React keep track of state?

7. How can you embed an expression within JSX code?

8. How can you change the state of a value once a class
has been constructed?

9. What must you first do to enable referring to props
using the this keyword within a constructor?

10. How can you create a conditional statement in JSX?

See “Chapter 20 Answers” in the Appendix A for the answers
to these questions.

Chapter 21. Introduction
to Node.js

Node.js is an open source, cross-platform JavaScript runtime
environment that was built on Chrome’s V8 JavaScript engine
by Ryan Dahl in 2009. It allows developers to execute
JavaScript code on the server side, meaning you can run
JavaScript both within and outside the web browser.

According to W3Techs, at the time of writing, Node.js is used
by 3.5% of websites. This may not sound like much, but a year
ago it was 2%, which represents a stunning growth rate of
150% in a year. What’s more, it’s most frequently used on very
high-traffic sites such as X/Twitter, Netflix, GitHub, Spotify,
TikTok, eBay, Reddit, and over 30 million other equally and
less well-known properties. To make an educated guess and
extrapolate this usage into potential market share over the next
few years, it’s possible that Node.js could be implemented on
up to a quarter of all web properties by the 2030s.

Node.js uses an event-driven, nonblocking model, whereas
web servers like Apache use a synchronous request-response
model, which means each incoming request is processed in a
separate thread, and the thread is blocked until the response is
ready. Node.js handles requests asynchronously, processing
connections without creating a new thread for each request.
This makes it highly scalable and ideal for real-time
applications, chat applications, gaming servers, and other
scenarios where low latency is essential.

For example, a web server like Apache will handle a request to
serve up a web page by sending the task to the computer’s
filesystem, then it will wait for the filesystem to return the file
before opening it and sending the contents back to the
requesting web browser. Node.js, on the other hand, uses

https://w3techs.com/

events in such a way that it passes the file request off to the
system and immediately goes back to listening for more
incoming requests. Then, when the filesystem is ready, it uses
an event to notify Node.js, which then opens the file and sends
the contents to the requesting web browser.

Node.js also comes with npm (commonly understood as Node
Package Manager, but officially it stands for “npm Is Not An
Acronym”), a powerful program that allows developers to
access and use a vast ecosystem of open source libraries and
modules. This extensive collection of packages simplifies
development and enables developers to leverage prebuilt
solutions for common tasks, significantly speeding up the
development process. The downside is that some packages are
often poorly maintained, poorly documented, buggy, and may
represent security threats. Blindly installing packages from
npm without thinking about it can get you into trouble.

APACHE REMAINS RELEVANT
While Node.js is an excellent choice for building scalable, real-time
applications that require both high concurrency and low latency,
Apache remains a strong choice for traditional web applications and
scenarios where CPU-bound processing is predominant. In some
cases, developers might even choose to use both technologies, with
Node.js handling real-time aspects and Apache serving static content
or acting as a reverse proxy. Another popular high-performance web
server you can use with PHP instead of Apache, and also as a reverse
proxy for Node.js, is nginx (pronounced “engine x”).

Installing Node.js on Windows
To use Node.js you must first install it, just as you installed
AMPPS in Chapter 2. You can download the latest release at
the Node.js website. You are recommended to install the LTS
(Long Term Support) version because, as the name suggests, it
will be supported for at least 18 months. You can always try
out the latest stable version to access the newest features, but
this is not recommended unless you are happy to not
necessarily get long-term support for it.

https://oreil.ly/r-OFp

NODE.JS ON WSL
If you’re using the Windows Subsystem for Linux (WSL) you may
prefer to install Node.js there instead of installing directly to Windows.
This allows you to install the recommended nvm (Node Version
Manager) to manage multiple active versions, for example. However,
similar to the section on Linux installation later on, this is not covered
here due to the many available installation options.

As of writing, the latest LTS release is version 20.17 and
installers are available as msi, ZIP, or source code files. These
days you are almost certain to be running a 64-bit operating
system so, unless you have a good reason otherwise, Windows
users should download and install the recommended msi
installer, which may well be a newer version than 20.17 by the
time you read this.

Once Node.js is downloaded you need to run the installer, and
you should see an intro screen similar to Figure 21-1. Over the
lifetime of this edition of the book the installation process for
Node.js may change, so use common sense to follow through
the installation if it’s much different than the following. For
now, click Next to get started.

Figure 21-1. The Node.js installation wizard

Your first decision is where you would like Node.js to be
installed, as shown in Figure 21-2. In most cases you should
accept the default directory offered and click Next.

Figure 21-2. Selecting a destination installation folder

Next, you can customize the features you wish to be installed,
as shown in Figure 21-3. Again, unless you have good reason
otherwise, just accept the defaults offered and click Next.

Figure 21-3. Customizing the defaults

I do recommend that you check the box enabling installation
of the tools necessary for compiling native modules, as this is
a lot simpler than following the set of alternative instructions

linked to, as shown in Figure 21-4. Whether or not you opt to
enable this, click Next to continue.

Figure 21-4. Enabling compiling of native modules

If you decide to enable the compiling of native modules then
you will see a window similar to Figure 21-5, which tells you
what will be installed and the resources required. Press any
key when you are ready to continue.

Figure 21-5. Installing the tools for Node.js

If you are installing the native module compilation support, a
PowerShell window will open, as shown in Figure 21-6, in
which you can watch the installation process. Once the

installation is finished you can press Enter and installation
should be complete.

Figure 21-6. Various Python tools are installed

You are now ready to test your new installation of Node.js. To
do this, open a PowerShell window and type the information
shown in Figure 21-7.

node -v

Figure 21-7. Checking that Node.js is installed

All being well the version number of Node.js will be shown. If
you see anything else (such as an error message) you most

likely can correct this by restarting the terminal and issuing the
command again.

Installing Node.js on macOS
To use Node.js you must first install it, just as you installed
AMPPS in Chapter 2. You can download the latest release at
the Node.js website. I recommend that you install the LTS
(Long Term Support) version because, as the name suggests, it
will be supported for a good time to come. You can always try
out the latest stable version to access the newest features, but
this is not recommended unless you do not need to get long-
term support for it.

As of writing, the latest LTS release is version 20.17 and since
the recommended installer works on either Intel or ARM
chips, unless you have a good reason to choose the specific
installer you need, you should download and install the
suggested pkg file, which may well be a newer version than
20.17 by the time you read this.

Once Node.js is downloaded you need to run the installer; you
should see an intro screen similar to Figure 21-8. Over the
lifetime of this edition of the book the installation process for
Node.js might change, so just use common sense to follow
through the installation if it’s much different than the
following. That said, to get started click Continue.

https://oreil.ly/r-OFp

Figure 21-8. The Node.js installer

Next you will need to read and agree to the software license
terms before you can proceed with installation, as shown in
Figure 21-9.

Figure 21-9. Agreeing to the software license

At this point you can choose the destination location and type
for the installation. In most cases, unless you have a good

reason to do otherwise, you should accept the default location
and type offered, as shown in Figure 21-10.

Figure 21-10. Selecting the installation destination location

For security reasons you must enter your password or use
biometric identification to commence the installation, as
shown in Figure 21-11.

Figure 21-11. You must identify yourself before proceeding

Installation should proceed and after a short while you will be
informed it has completed, as shown in Figure 21-12. Click
Close to finish.

Figure 21-12. Installation is complete

You are ready to test your new installation of Node.js. To do
this, open a Terminal window and type the information shown
in Figure 21-13.

node -v

Figure 21-13. Verifying the installation

You should see the version number of the software you just
installed.

Installing Node.js on Linux
You can download the latest release at the Node.js website. I
recommend you install the LTS (Long Term Support) version
because, as the name suggests, it will be supported for a good
time to come. You can always try out the latest stable version

https://oreil.ly/r-OFp

to access the newest features, but this is not recommended
unless you do not need to receive long-term support.

As of writing, the latest LTS release is version 20.17 and a
variety of options are available, including Intel and Arm
installers, the Node.js source code, a Docker image, Node
Version Manager (nvm), Linux on Power LE or System z, and
AIX on Power Systems.

Since these are so varied, and it is assumed that as a Linux
user you will already be familiar with how to install this type
of software, I leave it to you to determine the installer that is
best for you and to follow the relevant instructions linked to at
the bottom of the download page.

Once Node.js is installed you can verify success by typing the
following in a terminal window to be told the version of the
software just installed:

node -v

The result of running the command should look similar to the
macOS window shown in Figure 21-13.

Getting Started with Node.js
Creating your first Node.js program is a very simple,
straightforward process. We’ll be using ECMAScript modules
(ECMAScript is a standardized specification of JavaScript,
sometimes abbreviated as ES), the official standard format to
write JavaScript code that’s supposed to be reused. Most of the
Node.js ecosystem uses these modules. They are also why the
following files will use the .mjs extension (m for module) as
that’s the easiest way to tell Node.js you’ve created a module.

Let’s begin with a single-mission web server that responds
with the famous “Hello World” when accessed, as shown in
Examples 21-1 and 21-2.

Example 21-1. Hello World in Node.js, the function

function helloWorld()

{

 return 'Hello World'

}

export { helloWorld }

Type the code and save it in the current directory as
helloWorld.mjs. The helloWorld function is simple; it only
returns the string, while the next line exports the function from
the module, so it can be imported, or reused, by some other
module.

The following code represents the main module, the
application itself. Save it in the current directory under the
name app.mjs.

Example 21-2. Hello World in Node.js, the main application
import * as http from 'http'

import { helloWorld } from './helloWorld.mjs'

const server = http.createServer((request, response) =>

{

 response.writeHead(200, {'Content-Type': 'text/html'})

 response.end(helloWorld())

})

const port = 8000

server.listen(port, () => console.log('Server listening on port ' +

port))

Let’s work through this example. The Node.js http module is
loaded, or imported, into an identifier called http using the
import declaration. Node.js supports a range of modules to
provide different functionality, and this one provides a set of
functions to manage HTTP connections. The second line
imports the helloWorld function from a module created a
moment ago.

Next, another object called server is created by a call to the
http object’s method createServer, passing it a function that
takes two arguments, request and response. The response
object sets three properties: a status code of 200, an HTTP
header string specifying the content type, and a string to

respond with as returned by our helloWorld function, applied
using the response object’s methods writeHead and end.

After this a variable port is created with a port number
8000 the server will listen on. Using a different port than the
standard HTTP port (80) is a common practice; it solves port
clashes that would otherwise happen with the AMPPS Apache
still running. Last, the server object is set to start listening
with a call to the listen function, using the port specified,
and outputting a string to the console (the command line) after
the server starts to listen.

All you need do now is open a command prompt or terminal
window, and you can run it with the following instruction:

node app.mjs

All being well you will receive the following response:

Server listening on port 8000

You are now ready to test the server with a simple call to
localhost and the selected port 8000 from your web browser,
as follows, with the result being “Hello World” displayed in
your browser:

localhost:8000

To exit from a Node.js program press Ctrl-C, which you
should remember to do each time you modify a program,
before then rerunning it, as saving changes to a program will
not have any effect until it is restarted. Do this now, as we are
about to vastly improve on this server.

Building a Functioning Web Server
Now that you know how to interact with a Node.js program,
let’s create a web server that delivers the basic functionality of

a program such as Apache by supporting requests for multiple
files using different URLs. To do this we’ll need access to a
couple more modules for URL and file handling (url, fs, and
path), as shown, following the loading of the http module at
the head of Example 21-3.

Example 21-3. A functioning web server
import http from 'http'

import url from 'url'

import { readFile } from 'fs/promises'

import { resolve, extname } from 'path'

const SCRIPT_DIRECTORY = new URL('./', import.meta.url).pathname

const server = http.createServer(async (request, response) => {

 const fpath = resolve('.' + url.parse(request.url).pathname)

 if (!fpath.startsWith(SCRIPT_DIRECTORY)) {

 response.writeHead(400, { 'Content-Type': 'text/html' })

 response.end('400 Bad Request')

 return

 }

 if (extname(fpath) !== '.html') {

 response.writeHead(400, { 'Content-Type': 'text/html' })

 response.end('Sorry, only <code>.html</code> extension is

supported')

 return

 }

 try {

 const data = await readFile(fpath, 'utf8')

 response.writeHead(200, { 'Content-Type': 'text/html' })

 response.end(data)

 } catch (err) {

 response.writeHead(404, { 'Content-Type': 'text/html' })

 response.end('404 Not Found')

 }

})

const port = 8000

server.listen(port, () => console.log('Server listening on port ' +

port))

This is a very simple, very small, and very fast event-driven
web server for either serving up an HTML file if it exists or
otherwise returning a “404 Not Found” error message. It’s not
very smart as it supports only HTML files located in the
current directory, and it knows nothing about special files such
as PHP etc. Also there is no caching of files.

Nevertheless, on a simple website with just a collection of
HTML files and associated media, this web server can handle
thousands of simultaneous requests, due to there being no log-
jam waiting for the filesystem to return requested files, and it
will be very fast and effective. Let’s save this example as
server.mjs so that it can be run from a command prompt, like
this:

node server.mjs

To accompany the program we also need a simple HTML file
for the server to return, so save Example 21-4 as hello.html
and we’re ready to test the code.

Example 21-4. A simple HTML file
<!DOCTYPE html>

<html>

 <head>

 <title>Simple HTML file</title>

 </head>

 <body>

 <h1>Hello, how are you?</h1>

 </body>

</html>

Now you can type localhost:8000/hello.html into your web
browser and the file will be displayed. Or you can ask for a
nonexistent page such as localhost:8000/bye.html, in which
case a “404 Not Found” error will be returned. Let’s look at
how all this works.

First, after importing the required modules and functions, the
variable SCRIPT_DIRECTORY will be set to contain the path to
the current directory. It will be used later for a security check
on whether the requested file is in the current directory with
the following line:

if (!fpath.startsWith(SCRIPT_DIRECTORY)) {

 // return "Bad Request"

}

If the check fails, “Bad Request” will be returned instead. If
there was no check like this, the application would be
vulnerable to an attack called path traversal (sometimes
directory traversal), which would allow the attacker to request
any file in any directory on the server using paths like
../../etc/passwd and similar.

The code also checks the extension of the requested file and
allows just .html, because otherwise anyone could download
the source code by loading localhost:8000/server.mjs, which is
not what you want. It uses the extname function from the
built-in path module, like this:

if (extname(fpath) !== '.html') {

 // return "Only .html supported"

}

Similar to the “Hello World” example, this code creates a
server object to process requests, and it also makes calls to
the writeHead and end methods of the response object to
send the status code, content type, and the page content to the
calling web browser.

What’s new is how requests are dynamically processed,
starting with the variable fpath, which is given its value by
calling the parse method of the url module, passing it the
url property of the request object to obtain pathname, which
is then prefaced with the . character. The path is then resolved
to an absolute path by calling resolve on the path module
and compared with the SCRIPT_DIRECTORY variable. The
result is that if you, for example, request the URL
localhost:8000/hello.html then fpath will contain a full
absolute path to the hello.html file in the current directory.

This file handling is managed with a call to the
readFile method of the fs module, passing it the value in
fpath, and requesting the contents to be delivered in utf8
encoding, with the file data returned in the data variable. The

await operator is used to wait for a fulfilled promise (these are
the same objects you’ve already encountered in the
information about asynchronous functions in Chapter 17). If
there is an error, an exception is thrown and catched, and for
the sake of brevity and simplicity in this example, it is
assumed to be “Not Found,” with a status code of 404.

Of course you don’t have to only serve up preexisting files.
It’s quite possible (and highly likely) you will build responses
into your Node.js programs. That’s the power of it after all: the
ability to write both backend and frontend code in JavaScript.
So let’s modify the example one more time to show a simple
way of creating a fully self-contained program that acts like a
whole website of files, as in Example 21-5.

Example 21-5. A self-contained server
import http from 'http'

const server = http.createServer(async (request, response) => {

 let status = 200

 let output = '404 Not Found'

 switch (request.url) {

 case '/hello.html': output = 'Hello there'

 break

 case '/bye.html': output = 'Goodbye'

 break

 default: status = 404

 }

 response.writeHead(status, { 'Content-Type': 'text/html' })

 response.end(output)

})

const port = 8000

server.listen(port, () => console.log('Server listening on port ' +

port))

Here the fs, url, and path modules are no longer required,
and in place of file handling there is now a simple switch
statement in which each case is handled individually by
assigning a value to the variable output. There’s also no path
traversal check, because the code doesn’t access any files.

You can include as many cases as you like, but this example
just supports requests for hello.html and bye.html with a
default status value of 200 (OK) then passing through to the
writeHead and end methods. If neither case applies, in other
words anything other than these two strings are entered in the
web browser, the status code value is set to 404 and the
default error string “404 Not Found,” previously assigned to
output, both pass through to be returned to the browser.

Of course, your own code will be much more powerful and
creative than these examples, but you are now equipped with
enough Node.js knowledge to return either full files from a
filesystem or construct responses on the fly (or do both),
according to your needs. Next we’ll look more closely at
Node.js modules, how to manage them using npm, and how to
load them into Node.js to interact with a MySQL database.

Working with Modules
Now that you know how to leverage the frontend JavaScript
skills you learned earlier in this book to write backend code,
you can use the number three trending language (as I write).
Unfortunately, at some point, PHP as a technology (though
still widely used across the internet) is no longer even in the
top ten trending IEEE languages.

Perhaps it’s the strong relationship between PHP and MySQL
that keeps PHP installed on so many web properties, but even
that may change over the coming years because Node.js can
work with MySQL databases too, just by importing a module.
In fact, with over two million packages available for Node.js,
it offers support for just about any application you can think
of.

The way this is achieved is via npm, the Node.js package
manager, which is installed when you install Node.js itself.
But first let’s examine the modules that come with Node.js.

https://oreil.ly/skSs-

Built-in Modules
Node.js comes with a number of built-in modules that you can
access immediately through the import declaration without
having to install them using npm, a few of which you have
already encountered. Here’s a list of the most commonly used
modules:

crypto handles encrypted data.

dns handles name resolution.

fs accesses the local filesystem.

http transfers data over HTTP.

https transfers secure data over HTTP.

net transfers servers and clients.

os obtains information about the operating system.

path works with directory and filepaths.

querystring parses URL query strings.

url parses and resolves URL strings.

util accesses various utility functions.

Please see the official Node.js documentation for full details
on using Node.js modules.

Installing Modules with npm
To import a module to Node.js that is not built-in, use the npm
program, which stands for “npm Is Not An Acronym,”
although commonly understood as Node Package Manager.
For example, to install the mysql2 module, which offers some
additional features over the older mysql module, such as
prepared statements and placeholders, enter the following at a
command prompt:

https://nodejs.org/api

npm install mysql2

Go ahead and do this now as we’ll soon use this module to
connect to the database created in Chapter 8 just as easily as
we did using PHP. In a few seconds you should see something
like:

added 13 packages in 2s

You can now access this module as described in Chapter 20
using the import method.

You can also use npm to create your own packages, although
how to do this is beyond the scope of this book. For more
information, see the full npm documentation, or you can
access a treasure trove of ready-made packages at the npm
website.

Accessing MySQL
If Node.js is truly to able to replace a stack such as AMPPS
then it must be able to access databases and, as you’d expect,
it does, with great ease and simplicity. It has support for
PostgreSQL, DynamoDB, MongoDB, and many other SQL
and NoSQL databases. But since this is a book focusing on
MySQL, let’s work with MySQL via the mysql2 package you
downloaded during “Installing Modules with npm”.

I recommend you add a new user for all your Node.js accesses
by calling up MySQL like this, on a PC with AMPPS
installed:

C:\"Program Files\Ampps\mysql\bin\mysql" -u root -pmysql

Or like this on a Mac:

/Applications/ampps/mysql/bin/mysql -u root -pmysql

Or on Linux:

https://docs.npmjs.com/
https://npmjs.com/

mysql -u root -p

Once you are at the MySQL prompt you can create a new user
with the name node and password letmein like this:

CREATE USER 'node'@'localhost' IDENTIFIED BY 'letmein';

GRANT ALL ON publications.* TO 'node'@'localhost';

You might want to change this user’s name or password later,
but for the purposes of the following example these are the
details we’ll work with. Now you can exit from MySQL with
the following command:

quit;

Now, let’s write a simple Node.js program to log in to the
publications database we created in Chapter 8 and extract
some data from it, as in Example 21-6. Save the file as
mysql.mjs.

Example 21-6. Querying a MySQL database
import mysql from 'mysql2/promise'

const connection = await mysql.createConnection({

 host: 'localhost',

 user: 'node',

 password: 'letmein',

 database: 'publications'

})

try {

 const query = 'SELECT * FROM classics WHERE author = ?'

 const [results, fields] = await connection.execute(

 query,

 ['Jane Austen']

)

 console.log('Results:', results.length)

 console.log('Data returned:', results)

 console.log('Author:', results[0].author)

 console.log('Title:', results[0].title)

 console.log('Category:', results[0].category)

 console.log('Year:', results[0].year)

 console.log('ISBN:', results[0].isbn)

} catch (error) {

 console.log(error)

}

connection.end()

In this example, the first line fetches the mysql2 module and
creates the object mysql, creating a matching object called
connection from the access details provided. The access
details like username and password should not be stored
directly in your production code; instead, you should use a
special file called .env, or config.env to store them.

BUILT-IN .ENV SUPPORT
Starting with version 20.6, Node.js has a built-in .env support. You
create a file named, for example, config.env, which follows the INI
format with key=value lines like this:

USER=node

PASSWORD=letmein

Execute Node.js with a new command-line parameter:

node --env-file=config.env mysql.mjs

Then you can access the details with process.env, like this:

const connection = await mysql.createConnection({

 host: 'localhost',

 user: process.env.USER,

 password: process.env.PASSWORD,

 database: 'publications'

})

Next the variable query is assigned a MySQL query string,
which is using a placeholder ? instead of a variable (or
hardcoded string) to prevent SQL injection, and which when
executed with the parameter will return all fields from any
rows in which the author field contains “Jane Austen.” The
query is passed to MySQL via the execute method of the
connection object together with the parameter array. Two

objects are returned: results for the results and fields for
the fields accessed.

If an error occurred, an exception is thrown and a suitable
message logged; otherwise, the returned data is examined.
First, the number of results returned is obtained from
results.length then, just to show you what the returned data
object looks like, results is displayed in its entirety. After
that the contents of each of the five fields is individually
displayed.

Finally, the connection to the database is closed by calling the
end method of the connection object. Unlike a server, the
program then ends, returning access to the command prompt,
although you will probably include such MySQL accessing
code within a server-style program.

The result of running this code should look something like:

C:\nodesql> node mysql.mjs

Results: 1

Data returned: [

 {

 author: 'Jane Austen',

 title: 'Pride and Prejudice',

 category: 'Classic Fiction',

 year: 1811,

 isbn: '9780582506206'

 }

]

Author: Jane Austen

Title: Pride and Prejudice

Category: Classic Fiction

Year: 1811

ISBN: 9780582506206

You now have the means to construct queries, pass them to the
database, and retrieve the results.

To further your knowledge in this area, comprehensive
documentation on the mysql2 module is available at the npm
website.

https://oreil.ly/nvSER

Further Information
Of course we can only scratch the surface about software with
the power of a program such as Node.js. Nevertheless it’s a
testament to the simplicity and robustness of Node.js that it
has been possible to show you how to create functional web
servers that can interact with complex third-party software
such as the MySQL relational database.

You are well on your way to creating small, fast, functional,
and high-traffic Node.js web properties. To further your
knowledge you can browse other titles on the subject available
from resources such as the O’Reilly Learning Platform. And
you can read the official documentation at the Node.js website.

In Chapter 22 all the technologies covered in this book are
brought together to create a simple social network application.
But first, try answering the following questions to test your
Node.js knowledge.

Questions
1. After receiving a request for a file from a web

browser and passing the request off to the filesystem,
what does Node.js do?

2. What is the method called for including Node.js
prewritten modules?

3. Which three modules does Node.js use to manage
HTTP communication, parse URLs, and access the
local filesystem?

4. What is the default HTTP port a server listens to?

5. Which method of the http Node.js module is used to
create a new server object?

6. Which part of the response must be sent back to a
web browser first, before returning data (or an error)?

https://www.oreilly.com/search/?q=node.js
https://oreil.ly/V5N0P

7. How do you end a connection to a web browser?

8. How do you start a Node.js server?

9. How do you manually terminate a Node.js server?

10. How do you write messages to the terminal window
command line from Node.js?

11. How do you add external Node.js modules to a
project?

12. How do you use Node.js to access a MySQL
database?

13. How do you create a connection to MySQL in
Node.js?

14. How do you query a MySQL database with Node.js?

15. How do you terminate a connection to a MySQL
database?

See “Chapter 21 Answers” in the Appendix A for the answers
to these questions.

Chapter 22. Bringing It All
Together

Now that you’ve reached the end of this book, your first
milestone along the path of the hows, whys, and wherefores of
dynamic web programming, I want to leave you with a real
example. In fact, it’s a collection of examples, because I’ve put
together a simple social networking project comprising all the
main features you’d expect from such a site, or more to the
point, such a web app.

Across the various files, there are examples of MySQL table
creation and database access, CSS, file inclusion, session
control, asynchronous calls, event and error handling, file
uploading, image manipulation, and a whole lot more.

Each example file is complete and self-contained yet works
with all the others to build a fully working social networking
site, even including a stylesheet you can modify to completely
change the project’s look and feel.

The small, light end product is particularly usable on mobile
platforms such as a smartphone or tablet but will run equally
well on a full-size desktop computer. To exercise your skills,
you may wish to adapt the code further, perhaps using React in
some way.

I have tried to keep this code as concise as possible so it’s easy
to follow. Consequently, a great deal of improvement could be
made to it, such as smoother handling of some of the
transitions between being logged on and off—but let’s leave
those as the exercises for the reader, particularly since there
are no questions at the end of this chapter. Well…just the one!

I leave it up to you to take any pieces of this code you think
you can use and expand on them for your own purposes. You

might even build on these files to create a social networking
site of your own.

Designing a Social Networking App
Before writing any code, I thought about several things that
were essential for a social networking application:

A signup process

A login form

A logout facility

Session control

User profiles with uploaded thumbnails

A member directory

Adding members as friends

Public and private messaging between members

Project styling

I named the project Robin’s Nest; if you use this code, you will
need to modify the name and logo in the index.php and
header.php files.

Online Repository
All the examples in this chapter are available online in a
repository at GitHub, where you can download the archive file
lpmj7examples.zip, which you should extract to a suitable
location on your computer (such as the document root of the
AMPPS web server), where it can be easily accessed from
your browser.

Of particular interest to this chapter, within the file, you will
find a folder called robinsnest, in which all the examples from

https://github.com/RobinNixon/lpmj7

this chapter have been saved. Once these files are set up (as
detailed next), you should be able to type the following into
your browser to run the application:

localhost/robinsnest

functions.php
Let’s jump right into the project, starting with Example 22-1,
functions.php, the included file for the main functions. This
file contains a little more than just the functions, though,
because I have added the database login details here instead of
using a separate file. The first four lines of code define the
host and name of the database to use, as well as the username
and password.

By default, in this file the MySQL username is set to
robinsnest, and the database used by the program is also called
robinsnest. Chapter 8 provides detailed instructions on how to
create a new user and/or database, but to recap, first create a
new database called robinsnest by entering a MySQL
command prompt and typing this:

CREATE DATABASE robinsnest;

Then you can create a user called robinsnest capable of
accessing this database like this:

CREATE USER 'robinsnest'@'localhost' IDENTIFIED BY 'password';

GRANT ALL PRIVILEGES ON robinsnest.* TO

'robinsnest'@'localhost';

Obviously you would use a much more secure password for
this user than password, but for the sake of simplicity, this is
the password used in these examples—just make sure you
change it if you use any of this code on a production site.

The project uses two main functions:

destroySession

Destroys a PHP session and clears its data to log users out.

showProfile

Looks for an image of the name <user.jpg> (where
<user> is the username of the current user) and, if it finds
it, displays it. It also displays any “about me” text the user
may have saved.

I have ensured that error handling is in place for all the
functions that need it so that they can catch any typographical
or other errors you may introduce and generate error
messages. However, if you use any of this code on a
production server, you will want to provide your own error-
handling routines to make the code more user-friendly.

So, type in Example 22-1 and save it as functions.php (or
download it from the companion website), and you’ll be ready
to move to “header.php”.

Example 22-1. functions.php

<?php // Example 01: functions.php

 $dbhost = 'localhost'; // Change as necessary

 $db = 'robinsnest'; // Change as necessary

 $dbuser = 'robinsnest'; // Change as necessary

 $dbpass = 'password'; // Change as necessary

 $chrset = 'utf8mb4';

 $dbattr = "mysql:host=$dbhost;dbname=$db;charset=$chrset";

 $opts =

 [

 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION,

 PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC,

 PDO::ATTR_EMULATE_PREPARES => false,

];

 try {

 $pdo = new PDO($dbattr, $dbuser, $dbpass, $opts);

 } catch (\PDOException $e) {

 throw new \PDOException($e->getMessage(), (int)$e-

>getCode());

 }

https://github.com/RobinNixon/lpmj7

 function destroySession()

 {

 $_SESSION=array();

 if (session_id() !== "" || isset($_COOKIE[session_name()]))

 setcookie(session_name(), '', time()-2592000, '/');

 session_destroy();

 }

 function showProfile($user, $pdo)

 {

 if (file_exists("$user.jpg"))

 echo "";

 $stmt = $pdo->prepare("SELECT * FROM profiles WHERE

user=?");

 $stmt->execute([$user]);

 $row = $stmt->fetch();

 if ($row)

 echo htmlentities($row['text']) . "<br

style='clear:left;'>
";

 else

 echo "<p>Nothing to see here, yet</p>
";

 }

?>

NOTE
If you’ve read previous editions of this book, in which these examples
used the old mysql extension, and later on mysqli, you will see I have
moved on to the best solution so far, which is PDO. I’m also using
placeholders and prepared statements to protect the application against
SQL injection attacks.

To reference the MySQL database using PDO, the showProfile
function has a $pdo parameter you need to pass when calling the
function.

header.php
For uniformity, each page of the project needs to have access
to the same set of features. Therefore, I placed these in
Example 22-2, header.php. This is the file that is actually
included by the other files. It includes functions.php. This
means only a single require_once is needed in each file.

header.php starts a session by calling the function
session_start. As you’ll recall from Chapter 12, this sets up
a session that will remember certain values we want stored
across different PHP files. In other words, it represents a visit
by a user to the site, and it can time out if the user ignores the
site for a period of time.

With the session started, the file of functions (functions.php) is
included, and the default string of “Welcome Guest” is
assigned to $userstr.

Next, the code checks whether the session variable user is
currently assigned a value. If so, a user has already logged in,
so the variable $loggedin is set to TRUE and the username is
retrieved from the session variable user into the PHP variable
$user_html_entities (sanitized string for output), with
$userstr updated appropriately. If the user has not yet logged
in, then $loggedin is set to FALSE.

The program then outputs the HTML needed to set up each
web page, including loading stylesheets, Bootstrap Icons, the
logo, and the greeting.

BOOTSTRAP ICONS
The app uses icons from the Bootstrap Icons collection (the latest
version 1.11.3 as I write), a free, open source icon library. It can be
installed with npm but I’m loading it from the internet for the sake of
simplicity. To add an icon, you can use the <i> tag with the class that
specifies the icon you want, for example like this for a checkmark
icon:

<i class="bi-check"></i>

The are multiple usage methods and many icons to choose from. Visit
the Bootstrap Icons website to learn more.

After this, using the value of $loggedin, an if block displays
one of two sets of menus. The non-logged-in set simply offers
options of Home, Sign Up, and Log In, whereas the logged-in
version offers full access to the app’s features.

https://oreil.ly/93uVB

The additional styling applied to this file is in the file styles.css
(Example 22-13, detailed at the end of this chapter).

Example 22-2. header.php

<?php // Example 02: header.php

 session_start();

 require_once 'functions.php';

 $userstr = 'Welcome Guest';

 if (isset($_SESSION['user'])) {

 $user_html_entities = htmlentities($_SESSION['user']);

 $loggedin = TRUE;

 $userstr = "Logged in as: $user_html_entities";

 }

 else

 $loggedin = FALSE;

?>

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-

scale=1">

 <link rel="stylesheet" href="styles.css">

 <script src="javascript.js"></script>

 <link rel="stylesheet" href="

 https://cdn.jsdelivr.net/npm/bootstrap-

icons@1.11.3/font/bootstrap-icons.min.css

 ">

 <title>Robin's Nest: <?php echo $userstr; ?></title>

 </head>

 <body>

 <div>

 <div>

 <div id="logo"

 class="center">Rbin's

Nest</div>

 <div class="username"><?php echo $userstr; ?></div>

 </div>

 <div class="content">

<?php

 if ($loggedin) {

?>

 <div class="center">

 <a class="button"

 href="members.php?view=<?php echo

$user_html_entities; ?>">

 <i class="bi-house-door-fill"></i> Home

 <i class="bi-person-fill"></i> Members

 <i class="bi-heart-fill"></i> Friends

 <i class="bi-envelope-fill"></i> Messages

 <i class="bi-pencil-fill"></i> Edit Profile

 <i class="bi-door-closed-fill"></i> Log out

 </div>

<?php

 } else {

?>

 <div class="center">

 <i class="bi-house-door-fill"></i> Home

 <i class="bi-plus-circle-fill"></i> Sign Up

 <i class="bi-check-circle-fill"></i> Log In

 </div>

 <p class="info">(You must be logged in to use this app)

</p>

<?php

 }

?>

setup.php
With the pair of included files written, it’s time to set up the
MySQL tables they will use. We do this with Example 22-3,
setup.php, which you should type and load into your browser
before calling up any other files; otherwise, you’ll get
numerous MySQL errors.

The tables created are short and sweet, and they have the
following names and columns:

members

username user (indexed), password pass (to store a

password hash)

messages

ID id (indexed), author auth (indexed), recipient recip,

message type pm, message message

friends

username user (indexed), friend’s username friend

profiles

username user (indexed), “about me” text

Because the SQL query first checks whether a table already
exists, this program can be safely called multiple times
without generating any errors.

You very likely will need to add many more columns to these
tables if you choose to expand this project. If so, remember
that you may need to issue a MySQL DROP TABLE command
before re-creating a table.

Example 22-3. setup.php

<!DOCTYPE html> <!-- Example 03: setup.php -->

<html>

 <head>

 <title>Setting up database</title>

 </head>

 <body>

 <h3>Setting up...</h3>

<?php

 require_once 'functions.php';

 $pdo->query('CREATE TABLE IF NOT EXISTS members (

 user VARCHAR(16),

 pass VARCHAR(255),

 INDEX(user(6))

)');

 $pdo->query('CREATE TABLE IF NOT EXISTS messages (

 id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,

 auth VARCHAR(16),

 recip VARCHAR(16),

 pm CHAR(1),

 time INT UNSIGNED,

 message VARCHAR(4096),

 INDEX(auth(6)),

 INDEX(recip(6))

)');

 $pdo->query('CREATE TABLE IF NOT EXISTS friends (

 user VARCHAR(16),

 friend VARCHAR(16),

 INDEX(user(6)),

 INDEX(friend(6))

)');

 $pdo->query('CREATE TABLE IF NOT EXISTS profiles (

 user VARCHAR(16),

 text VARCHAR(4096),

 INDEX(user(6))

)');

?>

...done.

 </body>

</html>

WARNING
For this example to work, you must first ensure that you have created
the database specified in the variable $db in Example 22-1 and granted
access to the user given the name in $dbuser, with the password in
$dbpass.

index.php
The index.php file just displays a simple welcome message,
but it is necessary to give the project a home page. In a
finished application, this would be where you sell the virtues
of your site to encourage signups.

Incidentally, because we have already set up all the MySQL
tables and created the included files, you can now load
Example 22-4, index.php, into your browser to get your first
peek at the new application. It should look like Figure 22-1.

Example 22-4. index.php

<?php // Example 04: index.php

 require_once 'header.php';

 echo "<div class='center'>Welcome to Robin's Nest,";

 if ($loggedin) {

 $user_html_entities = htmlentities($_SESSION['user']);

 echo " $user_html_entities, you are logged in";

 } else

 echo ' please sign up or log in';

?>

 </div>

 </div>

 <h4 id="footer" class="center">Web App from <i>

 <a href="https://github.com/RobinNixon/lpmj7"

target="_blank">

 Learning PHP MySQL & JavaScript

 </i></h4>

 </body>

</html>

Figure 22-1. The main page of the app

signup.php

Now we need a module to enable users to join our new social
network, and that’s Example 22-5, signup.php. This is a
slightly longer program, but you’ve seen all its parts before.

Let’s start by looking at the end block of HTML. This is a
simple form that allows a username and password to be
entered. But note the use of the empty given the id of
used. This will be the destination of the asynchronous call in
this program that checks whether a desired username is
available. See Chapter 17 for a complete description of how
this works.

Checking for Username Availability
At the end of the HTML you’ll see a block of JavaScript. It
contains an anonymous arrow function that is called on the
JavaScript blur event when focus is removed from the
username field of the form. The function makes a request to
the program checkuser.php, which reports whether the
username in user is available. The returned result of the
asynchronous call (performed using the fetch function), a
friendly message, is then placed in the used .

Go back to the program start: there’s some PHP code you
should recognize from the discussion of form validation in
Chapter 16. This section also uses placeholders and prepared
statements when looking up the username in the database and,
if it’s not already taken, inserting the new username and
password. The password is not stored in the clear, as that
would be a huge security risk. Instead its one-way hash is used
(see Chapter 12 for more details).

Logging In
Upon successfully signing up, the user is then prompted to log
in. A more fluid response at this point might be to
automatically log in a newly created user, but because I don’t
want to overly complicate the code, I have kept the signup and

login modules separate. You can easily implement this if you
want to, however.

When loaded into a browser (and in conjunction with
checkuser.php, shown later), this program will look like
Figure 22-2, where you can see that the asynchronous call has
identified that the username Robin is available. If you would
like the password field to show only asterisks, change its type
from text to password.

Remember that you must run setup.php before you can run any
of these other PHP program files.

Figure 22-2. The signup page

Example 22-5. signup.php

<?php // Example 05: signup.php

 require_once 'header.php';

 $error = $user = "";

 if (isset($_SESSION['user']))

 destroySession();

 if (isset($_POST['user'])) {

 $user = $_POST['user'];

 if ($_POST['user'] === "" || $_POST['pass'] === "")

 $error = 'Not all fields were entered';

 else {

 $stmt = $pdo->prepare('SELECT * FROM members WHERE

user=?');

 $stmt->execute([$user]);

 if ($stmt->rowCount())

 $error = 'That username already exists

';

 else {

 $stmt = $pdo->prepare('INSERT INTO members VALUES(?,

?)');

 $stmt->execute([$user, password_hash($_POST['pass'],

PASSWORD_DEFAULT)]);

 die('<h4>Account created</h4>Please Log in.</div></body>

</html>');

 }

 }

 }

 $error_html_entities = htmlentities($error);

 $user_html_entities = htmlentities($user);

?>

 <form method="post" action="signup.php">

 <p class="error">

 <?php echo $error_html_entities; ?>

 </p>

 <p>Please enter your details to sign up</p>

 <p>

 <label>Username</label>

 <input type="text" maxlength="16" name="user"

id="username"

 value="<?php echo $user_html_entities; ?>">

 <label></label>

 </p>

 <p>

 <label>Password</label>

 <input type="text" name="pass">

 </p>

 <p>

 <label></label>

 <input type="submit" value="Sign Up">

 </p>

 </form>

 <script>

 const field = byId('username');

 field.onblur = () => {

 if (field.value === '')

 return

 const data = new FormData()

 data.set('user', field.value)

 fetch('checkuser.php', { method: 'post', body: data})

 .then(response => response.text())

 .then(text => byId('used').innerHTML = text)

 }

 </script>

 </div>

 </body>

</html>

checkuser.php
To go with signup.php, here’s Example 22-6, checkuser.php,
which looks up a username in the database and returns a string
indicating whether it has already been taken. Because it relies
on the $pdo variable to use prepared statements, the program
first includes the file functions.php.

Then, if the $_POST variable user has a value, the function
looks it up in the database and, depending on whether it exists
as a username, outputs either “Sorry, the username ‘user’ is
taken” or “The username ‘user’ is available.” Just checking
the value returned by the function call to $stmt->rowCount is
sufficient for this, as it will return 0 if the name is not found or
1 if it is found.

The HTML entities ✘ and ✔ are also used to
preface the string with either a cross or a checkmark, and the
string will be displayed in either red for the class taken or
green for the class available, as defined in styles.css, shown
later in this chapter.

Example 22-6. checkuser.php

<?php // Example 06: checkuser.php

 require_once 'functions.php';

 if (isset($_POST['user'])) {

 $stmt = $pdo->prepare('SELECT * FROM members WHERE user=?');

 $stmt->execute([$_POST['user']]);

 $user_html_entities = htmlentities($_POST['user']);

 if ($stmt->rowCount())

 echo " ✘ " .

 "The username '$user_html_entities' is

taken";

 else

 echo " ✔ " .

 "The username '$user_html_entities' is

available";

 }

?>

login.php
With users now able to sign up on the site, Example 22-7,
login.php, provides the code needed to let them log in. Like
the signup page, it features a simple HTML form and some
basic error checking, and it uses prepared statements and
placeholders to query the MySQL database.

Two things to note here: first is that to verify a password
stored as a one-way hash, the row with the hash needs to be
queried from the database by the username. Then the hash
from the database, together with the password from the login
field, is passed to the password_verify function, which
returns true if the password from the form matches the stored
hash. This is a bit more complicated than just comparing two
strings, so we’ll leave it all to password_verify.

Second, upon successful verification of the username and
password, the session variable user is given the username. As
long as the current session remains active, this variable will be
accessible by all the programs in the project, allowing them to
automatically provide access to logged-in users. Storing the
password or the password hash in the session is not needed
and would be a security risk as it would be stored in the clear
in the session data.

The header function, upon successfully logging in, redirects
the user to the home page once logged in. The function sends a
special HTTP header Location that will cause the redirection
in the browser, followed by a URL, in this case the

members.php filename and the username in the view
parameter.

When you call this program up in your browser, it should look
like Figure 22-3. Note how the input type of password has
been used here to mask the password with asterisks to prevent
it from being viewed by anyone looking over the user’s
shoulder.

Example 22-7. login.php

<?php // Example 07: login.php

 require_once 'header.php';

 $error = $user = "";

 if (isset($_POST['user'])) {

 $user = $_POST['user'];

 if ($user === "" || $_POST['pass'] === "")

 $error = 'Not all fields were entered';

 else {

 $stmt = $pdo->prepare('SELECT user,pass FROM members WHERE

user=?');

 $stmt->execute([$user]);

 $result = $stmt->fetchAll();

 if (count($result) === 0

 || !password_verify($_POST['pass'], $result[0]['pass']))

 {

 $error = "Invalid login attempt";

 } else {

 $_SESSION['user'] = $user;

 header('Location: members.php?view=' . $user);

 }

 }

 }

 $error_html_entities = htmlentities($error);

 $user_html_entities = htmlentities($user);

?>

 <form method="post" action="login.php">

 <p class="error">

 <?php echo $error_html_entities; ?>

 </p>

 <p>

 Please enter your details to log in

 </p>

 <p>

 <label>Username</label>

 <input type="text" maxlength="16" name="user"

 value="<?php echo $user_html_entities; ?>">

 </p>

 <p>

 <label>Password</label>

 <input type="password" name="pass">

 </p>

 <p>

 <label></label>

 <input type="submit" value="Login">

 </p>

 </form>

 </div>

 </body>

</html>

Figure 22-3. The login page

profile.php
One of the first things that new users may want to do after
signing up and logging in is to create a profile, which can be
done via Example 22-8, profile.php. There’s some interesting

code here, such as routines to upload, resize, and sharpen
images.

Let’s start by looking at the main HTML at the end of the
code. This is like the forms you’ve just seen, but this time it
has the parameter enctype="multipart/form-data". This
allows us to send more than one type of data at a time,
enabling the posting of an image as well as text. There’s also
an input type of file, which creates a Browse button that a
user can click to select a file to be uploaded.

When the form is submitted, the code at the start of the
program is executed. The first thing it does is ensure that a
user is logged in before allowing program execution to
proceed. Only then is the page heading displayed.

Adding the “About Me” Text
Next, the $_POST variable text is checked to see whether
some text was posted to the program. If so, all long whitespace
sequences (including carriage returns and line feeds) are
replaced with single spaces. This program checks that the
user’s profile already exists in the database and if it does, the
text that is the user’s “about me” will be updated; otherwise a
new profile text is inserted. Notice how two different queries
are prepared, but execute is called only once, because while
the queries are different, both use the same data, $text and
$user.

If no text was posted, the database is queried to see whether
any text already exists to prepopulate the <textarea> for the
user to edit it. htmlentities is used to sanitize the output
against XSS attacks, similar to other outputs in this web
application.

Adding a Profile Image

Next we move on to the section where the $_FILES system
variable is checked to see whether an image has been
uploaded. If so, a string variable called $saveto is created,
based on the user’s username followed by the extension .jpg.
For example, a user called Jill will cause $saveto to have the
value Jill.jpg. This is the file where the uploaded image will be
saved for use in the user’s profile.

Following this, the uploaded image type is examined and is
accepted only if it is a .jpeg, .png, or .gif image. Besides the
image’s dimensions, the function getimagesize also returns
the image type (as one of the IMAGETYPE_XXX constants, see
the PHP manual for the list) by examining the file itself, as
used here.

We store the image’s dimensions in $w, $h, and the $type
using the following statement, which is a quick way of
assigning values from an array to separate variables:

list($w, $h, $type) = getimagesize($saveto);

WARNING
Don’t use the $_FILES array to get the image type. That may not be
correct because that type comes from the browser and could, for
example, be modified by the attacker.

Upon success, the variable $src is populated with the
uploaded image using one of the imagecreatefrom functions,
according to the image type uploaded. The image is now in a
raw format that PHP can process. If the image is not of an
allowed type, the flag $typeok is set to FALSE, preventing the
final section of image upload code from being processed.

Processing the Image
After the correct file is uploaded, using the value of $max
(which is set to 100), we calculate new dimensions that will
result in a new image of the same ratio but with no dimension

https://oreil.ly/-DpDJ

greater than 100 pixels. This results in giving the variables $tw
and $th the new values needed. If you want smaller or larger
thumbnails, simply change the value of $max accordingly.

Next, the function imagecreatetruecolor is called to create
a new, blank canvas $tw wide and $th high in $tmp. Then
imagecopyresampled is called to resample the image from
$src to the new $tmp. Sometimes resampling images can
result in a slightly blurred copy, so the next piece of code uses
the imageconvolution function to sharpen the image a bit.

Finally, the image is saved as a .jpeg file in the location
defined by the variable $saveto, after which we remove both
the original and the resized image canvases from memory
using the imagedestroy function, returning the memory that
was used.

Displaying the Current Profile
Last but not least, so that the user can see what the current
profile looks like before editing it, the showProfile function
from functions.php is called prior to outputting the form
HTML. If no profile exists yet, nothing will be displayed.

When a profile image is displayed, CSS is applied to it to
provide a border, a shadow, and a margin to its right, to
separate the profile text from the image. The result of loading
Example 22-8 into a browser is shown in Figure 22-4, where
you can see that the <textarea> has been prepopulated with
the “about me” text.

Example 22-8. profile.php

<?php // Example 08: profile.php

 require_once 'header.php';

 if (!$loggedin)

 die("</div></body></html>");

 $user = $_SESSION['user'];

 echo "<h3>Your Profile</h3>";

 $stmt = $pdo->prepare('SELECT * FROM profiles WHERE user=?');

 $stmt->execute([$user]);

 if (isset($_POST['text'])) {

 $text = preg_replace('/\s\s+/', ' ', $_POST['text']);

 $text_html_entities = htmlentities($_POST['text']);

 if ($stmt->rowCount())

 $stmt2 = $pdo->prepare('UPDATE profiles SET text=:text

WHERE user=:user');

 else

 $stmt2 = $pdo->prepare('INSERT INTO profiles VALUES(:user,

:text)');

 $stmt2->execute([':text' => $text, ':user' => $user]);

 } else {

 if ($stmt->rowCount()) {

 $row = $stmt->fetch();

 $text_html_entities = htmlentities($row['text']);

 }

 else $text_html_entities = "";

 }

 if (isset($_FILES['image']['name'])) {

 $saveto = "$user.jpg";

 move_uploaded_file($_FILES['image']['tmp_name'], $saveto);

 $typeok = TRUE;

 $info = getimagesize($saveto);

 if ($info) {

 list($w, $h, $type) = $info;

 switch ($type) {

 case IMAGETYPE_GIF: $src = imagecreatefromgif($saveto);

break;

 case IMAGETYPE_JPEG: $src =

imagecreatefromjpeg($saveto); break;

 case IMAGETYPE_PNG: $src = imagecreatefrompng($saveto);

break;

 default: $typeok = FALSE; break;

 }

 }

 else

 $typeok = FALSE;

 if ($typeok) {

 $max = 100;

 $tw = $w;

 $th = $h;

 if ($w > $h && $max < $w) {

 $th = $max / $w * $h;

 $tw = $max;

 } elseif ($h > $w && $max < $h) {

 $tw = $max / $h * $w;

 $th = $max;

 } elseif ($max < $w) {

 $tw = $th = $max;

 }

 $tmp = imagecreatetruecolor($tw, $th);

 imagecopyresampled($tmp, $src, 0, 0, 0, 0, $tw, $th, $w,

$h);

 imageconvolution($tmp, array(array(-1, -1, -1),

 array(-1, 16, -1), array(-1, -1, -1)), 8, 0);

 imagejpeg($tmp, $saveto);

 imagedestroy($tmp);

 imagedestroy($src);

 }

 }

 showProfile($user, $pdo);

?>

 <form method="post"

 action="profile.php" enctype="multipart/form-data">

 <h3>Enter or edit your details and/or upload an image</h3>

 <textarea

 name="text" cols="50"><?php echo $text_html_entities; ?>

</textarea>

 <p>Image: <input type="file" name="image" size="14"></p>

 <input type="submit" class="button" value="Save Profile">

 </form>

 </div>

 </body>

</html>

Figure 22-4. Editing a user profile

members.php
Using Example 22-9, members.php, your users will be able to
find other members and choose to add them as friends (or drop
them if they are already friends). This program has two modes.
The first lists all members and their relationships to you, and
the second shows a user’s profile.

Viewing a User’s Profile
The code for the latter mode comes first, where a test is made
for the variable view, retrieved from the $_GET array. If it

exists, a user wants to view someone’s profile, so the program
does that using the showProfile function, along with
providing a couple of links to the user’s friends and messages,
sanitizing the URL parameter against malicious input.

Adding and Dropping Friends
After that, the two $_GET parameters add and remove are
tested. If one or the other has a value, it will be the username
of a user to either add or drop as a friend. We achieve this by
looking up the user in the MySQL friends table and either
inserting the username or removing it from the table.

And, of course, every database query is done using
placeholders and prepared statements to ensure that the data is
safe to use with MySQL.

Listing All Members
The final section of code issues an SQL query to list all
usernames. A while loop then iterates through every member,
fetching their details and then looking them up in the friends
table to see if they are being followed by or are following the
user. If someone is both a follower and a followee, they are
classed as a mutual friend.

The variable $t1 is nonzero when the user is following
another member, and $t2 is nonzero when another member is
following the user. Depending on these values, text is
displayed after each username, showing the relationship (if
any) to the current user.

Icons are also displayed to show the relationships. A double-
pointing arrow means that the users are mutual friends, a left-
pointing arrow indicates the user is following another member,
and a right-pointing arrow indicates that another member is
following the user.

Finally, depending on whether the user is following another
member, a link is provided to either add or drop that member
as a friend.

When you call up Example 22-9 in a browser, it will look like
Figure 22-5. Note how the user is invited to “follow” a
nonfollowing member, but if the member is already following
the user, a “recip” link to reciprocate the friendship is offered.
In the case of a user already following another member, the
user can select “drop” to end the following.

Figure 22-5. Using the members module

NOTE
On a production server, there could be thousands or even millions of
users, so you would substantially modify this program to include
support for searching the “about me” text, paging the output a screen
at a time, and so on.

Example 22-9. members.php

<?php // Example 09: members.php

 require_once 'header.php';

 if (!$loggedin)

 die("</div></body></html>");

 $user = $_SESSION['user'];

 if (isset($_GET['view'])) {

 $view = $_GET['view'];

 $view_html_entities = htmlentities($view);

 if ($_GET['view'] === $user)

 $name = "Your";

 else

 $name = "$view_html_entities's";

 echo "<h3>$name Profile</h3>";

 showProfile($view, $pdo);

 echo "<a class='button'

 href='messages.php?view=$view_html_entities'>View $name

messages";

 die("</div></body></html>");

 }

 if (isset($_GET['add'])) {

 $stmt = $pdo->prepare('SELECT * FROM friends WHERE user=?

AND friend=?');

 $stmt->execute([$_GET['add'], $user]);

 if (!$stmt->rowCount()) {

 $stmt = $pdo->prepare("INSERT INTO friends VALUES (?,

?)");

 $stmt->execute([$_GET['add'], $user]);

 }

 } elseif (isset($_GET['remove'])) {

 $stmt = $pdo->prepare('DELETE FROM friends WHERE user=? AND

friend=?');

 $stmt->execute([$_GET['remove'], $user]);

 }

?>

 <p>Other members</p>

<?php

 $stmt = $pdo->prepare("SELECT user FROM members ORDER BY

user");

 $stmt->execute();

 if (!$stmt->rowCount()) {

 echo 'No other members';

 }

 while ($row = $stmt->fetch()) {

 if ($row['user'] === $user)

 continue;

 $rowuser_html_entities = htmlentities($row['user']);

 echo "<a

 href='members.php?

view=$rowuser_html_entities'>$rowuser_html_entities";

 $follow = "follow";

 $stmt2 = $pdo->prepare('SELECT * FROM friends WHERE user=?

AND friend=?');

 $stmt2->execute([$row['user'], $user]);

 $t1 = $stmt2->rowCount();

 $stmt2->execute([$user, $row['user']]);

 $t2 = $stmt2->rowCount();

 if (($t1 + $t2) > 1)

 echo " ↔ is a mutual friend";

 elseif ($t1)

 echo " ← you are following";

 elseif ($t2) {

 echo " → is following you";

 $follow = "recip";

 }

 if (!$t1)

 echo " [<a href='members.php?

add=$rowuser_html_entities'>$follow]";

 else

 echo " [<a href='members.php?

remove=$rowuser_html_entities'>drop]";

 }

?>

 </div>

 </body>

</html>

friends.php
The module that shows a user’s friends and followers is
Example 22-10, friends.php. This interrogates the friends table
just like the members.php program but only for a single user. It
then shows all of that user’s mutual friends and followers
along with the people they are following.

All the followers are saved into an array called $followers,
and all the people being followed are placed in an array called

$following. Then a neat piece of code is used to extract all of
those who are both following and followed by the user, like
this:

$mutual = array_intersect($followers, $following);

The array_intersect function extracts all members common
to both arrays and returns a new array containing only those
people. This array is then stored in $mutual. Now it’s possible
to use the array_diff function for each of the $followers
and $following arrays to keep only those people who are not
mutual friends, like this:

$followers = array_diff($followers, $mutual);

$following = array_diff($following, $mutual);

This results in the array $mutual containing only mutual
friends, $followers containing only followers (and no mutual
friends), and $following containing only people being
followed (and no mutual friends).

With these arrays, it’s a simple matter to separately display
each category of members, as in Figure 22-6. The PHP sizeof
function (alias of the count function) returns the number of
elements in an array; here I use it just to trigger code when the
size is nonzero (that is, when friends of that type exist). Note
how, by using the variables $name1, $name2, and $name3 in
the relevant places, the code can tell when you’re looking at
your own friends list, using the words Your and You are,
instead of simply displaying the username. The commented
line can be uncommented if you wish to display the user’s
profile information on this screen.

Example 22-10. friends.php

<?php // Example 10: friends.php

 require_once 'header.php';

 if (!$loggedin)

 die("</div></body></html>");

 $user = $_SESSION['user'];

 if (isset($_GET['view'])) {

 $view = $_GET['view'];

 } else {

 $view = $user;

 }

 $view_html_entities = htmlentities($view);

 if ($view === $user) {

 $name1 = $name2 = "Your";

 $name3 = "You are";

 } else {

 $name1 = "<a

 href='members.php?

view=$view_html_entities'>$view_html_entities's";

 $name2 = "$view_html_entities's";

 $name3 = "$view_html_entities is";

 }

 // Uncomment this line if you wish the user’s profile to show

here

 // showProfile($view);

 $followers = $following = [];

 $stmt = $pdo->prepare('SELECT * FROM friends WHERE user=?');

 $stmt->execute([$view]);

 while ($row = $stmt->fetch()) {

 $followers[] = $row['friend'];

 }

 $stmt = $pdo->prepare('SELECT * FROM friends WHERE friend=?');

 $stmt->execute([$view]);

 while ($row = $stmt->fetch()) {

 $following[] = $row['user'];

 }

 $mutual = array_intersect($followers, $following);

 $followers = array_diff($followers, $mutual);

 $following = array_diff($following, $mutual);

 $friends = FALSE;

 echo "
";

 if (sizeof($mutual)) {

 echo "$name2 mutual friends

";

 foreach ($mutual as $friend) {

 $fr_html_entities = htmlentities($friend);

 echo "<a

 href='members.php?

view=$fr_html_entities'>$fr_html_entities";

 }

 echo "";

 $friends = TRUE;

 }

 if (sizeof($followers)) {

 echo "$name2 followers";

 foreach ($followers as $friend)

 $fr_html_entities = htmlentities($friend);

 echo "<a

 href='members.php?

view=$fr_html_entities'>$fr_html_entities";

 echo "";

 $friends = TRUE;

 }

 if (sizeof($following)) {

 echo "$name3 following";

 foreach ($following as $friend)

 $fr_html_entities = htmlentities($friend);

 echo "<a

 href='members.php?

view=$fr_html_entities'>$fr_html_entities";

 echo "";

 $friends = TRUE;

 }

 if (!$friends)

 echo "
You don't have any friends yet.";

?>

 </div>

 </body>

</html>

Figure 22-6. Displaying a user’s friends and followers

messages.php
The last of the main modules is Example 22-11, messages.php.
The program starts by checking whether a message has been
posted in the variable text. If so, it is inserted into the
messages table. At the same time, the value of pm is also
stored. This indicates whether a message is private or public.
A 0 represents a public message, and 1 is private.

Next, the user’s profile and a form for entering a message are
displayed, along with radio buttons to choose between a
private or public message. After this, all the messages are
shown, depending on whether they are private or public. If
they are public, all users can see them, but private messages
are visible only to the sender and recipient. This is all handled
by a couple of queries to the MySQL database. Additionally,

when a message is private, it is introduced by the word
whispered and shown in italic.

Finally, the program displays a couple of links to refresh the
messages (in case another user has posted one in the
meantime) and to view the user’s friends. The trick using the
variables $name1 and $name2 is used again so that when you
view your own profile, the word Your is displayed instead of
the username.

Example 22-11. messages.php

<?php // Example 11: messages.php

 require_once 'header.php';

 if (!$loggedin)

 die("</div></body></html>");

 $user = $_SESSION['user'];

 if (isset($_GET['view'])) {

 $view = $_GET['view'];

 } else {

 $view = $user;

 }

 $view_html_entities = htmlentities($view);

 if (isset($_POST['text']) && $_POST['text'] !== "") {

 $stmt = $pdo->prepare('INSERT INTO messages VALUES(NULL, ?,

?, ?, ?, ?)');

 $stmt->execute([$user, $view, (int)$_POST['pm'], time(),

$_POST['text']]);

 }

 if ($view !== "") {

 if ($view === $user)

 $name1 = $name2 = "Your";

 else {

 $name1 = "<a

 href='members.php?

view=$view_html_entities'>$view_html_entities's";

 $name2 = "$view_html_entities's";

 }

 echo "<h3>$name1 Messages</h3>";

 showProfile($view, $pdo);

?>

 <form method="post"

 action="messages.php?view=<?php echo

$view_html_entities; ?>">

 <p>Type here to leave a message</p>

 <p>

 <input type="radio" name="pm" id="public"

 value="0" checked="checked">

 <label for="public">Public</label>

 <input type="radio" name="pm" id="private" value="1">

 <label for="private">Private</label>

 </p>

 <textarea name="text" cols="50"></textarea>

 <input type="submit" class="button" value="Post

Message">

 </form>

<?php

 date_default_timezone_set('UTC');

 if (isset($_GET['erase'])) {

 $stmt = $pdo->prepare('DELETE FROM messages WHERE id=? AND

recip=?');

 $stmt->execute([(int)$_GET['erase'], $user]);

 }

 $stmt = $pdo->prepare('SELECT * FROM messages

 WHERE recip=? ORDER BY time DESC');

 $stmt->execute([$view]);

 $num = $stmt->rowCount();

 while ($row = $stmt->fetch()) {

 $pm = $row['pm'] === '1';

 $auth_html_entities = htmlentities($row['auth']);

 $message_html_entities = htmlentities($row['message']);

 $id_html_entities = htmlentities($row['id']);

 if (!$pm || $row['auth'] === $user || $row['recip'] ===

$user) {

 echo date('M jS \'y g:ia:', $row['time']);

 echo "

 $auth_html_entities ";

 if (!$pm)

 echo "wrote: "$message_html_entities" ";

 else

 echo "whispered:

 "$message_html_entities" ";

 if ($row['recip'] === $user)

 echo "[<a href='messages.php?view=$view_html_entities"

.

 "&erase=$id_html_entities'>erase]";

 echo "
";

 }

 }

 }

 if (!$num)

 echo "
No messages yet

";

 echo "
<a class='button'

 href='messages.php?view=$view_html_entities'>Refresh

messages";

?>

 </div>

 </body>

</html>

You can see the result of viewing this program with a browser
in Figure 22-7. Note how users viewing their own messages
are provided with links to erase any they don’t want to keep.

Figure 22-7. The messaging module

logout.php
The final ingredient in our social networking recipe is
Example 22-12, logout.php, the logout page that closes a
session and deletes any associated data and cookies. The result
of calling up this program is an HTTP redirect to index.php
and, unless you’re not logged in, there’s no other output.

Example 22-12. logout.php

<?php // Example 12: logout.php

 require_once 'header.php';

 if (isset($_SESSION['user'])) {

 destroySession();

 header('Location: index.php');

 } else

 echo "<div class='center'>You cannot log out because

 you are not logged in</div>";

?>

 </div>

 </body>

</html>

styles.css
The stylesheet used for this project is shown in Example 22-
13. Most of the sets of declarations should be clear, but these
might require some explanation:

*

Sets the default font family and size for the project using
the universal selector.

.content

Sets the maximum width for the page content block which,
unlike setting width, allows the content to be smaller if the
device screen is smaller. It also centers the block by setting
the left and right margins to auto.

.button

The properties set here make sure that links with this CSS
class appear as buttons.

.button:hover

If you move your mouse cursor over such button, the
background color of the button changes to the color
specified here.

.button:focus

Clicking the button will add a blue glow around it, as
specified by this declaration.

.button i

The color for the icons (from the Bootstrap Icons
collection) in the buttons is set here.

#robin

Aligns the image of the robin in the page title and removes
the shadow that’s otherwise added to other pictures.

#used

Ensures the element populated by the checkuser.php
asynchronous call if a username is already taken is not too
close to the field above it.

Example 22-13. styles.css

/* Example 13: styles.css */

* {

 font-family:Verdana,sans-serif;

 font-size :14pt;

}

body {

 margin :0;

 padding :0;

}

html {

 background:#f8f8f8

}

img {

 border :1px solid black;

 margin-right :15px;

 box-shadow :2px 2px 2px #888;

}

a {

 color: #38c;

 font-weight: bold;

}

label {

 display :inline-block;

 width :5rem;

 text-align:left;

}

textarea {

 max-width:100%;

}

.content {

 padding :2rem;

 margin :0 auto;

 max-width:700px;

}

.button {

 font-family :Arial, sans-serif;

 background-color:#f3f3f3;

 padding :0.5rem;

 margin :0.5rem;

 text-decoration :none;

 color :black;

 border-radius :0.2rem;

 box-shadow :1px 1px 3px 1px #d3d3d3;

 font-weight :bold;

 white-space :nowrap;

 display :inline-block;

}

.button:hover {

 background-color: #e3e3e3;

}

.button:focus {

 box-shadow:0 0 12px #38c;

}

.button i {

 color: #b5b5b5;

}

.username {

 text-align :center;

 background :#eb8;

 color :#40d;

 font-family:helvetica;

 font-size :20pt;

 padding :4px;

 text-shadow:0 1px 0 #eee;

 font-weight:bold;

}

.info {

 font-style :italic;

 margin :40px 0px;

 text-align :center;

}

.center {

 text-align:center;

}

.subhead {

 font-weight:bold;

}

.taken, .error {

 color :red;

 font-weight:bold;

}

.available {

 color:green;

}

.whisper {

 font-style:italic;

 color :#006600;

}

#logo {

 font-family:Georgia;

 font-weight:bold;

 font-style :italic;

 font-size :97px;

 color :red;

 padding : 0.75rem;

 background-color: #e9e9e9;

}

#robin {

 position :relative;

 border :0px;

 margin-left :-6px;

 margin-right :0px;

 top :17px;

 box-shadow :0px 0px 0px;

}

#used {

 margin-top: 0.2rem;

}

#footer {

 padding: 1rem;

 background-color: #e9e9e9;

}

javascript.js
Finally, there’s the JavaScript file (see Example 22-14), which
contains the byId, style, and by functions used throughout
this book.

Example 22-14. javascript.js

function byId(id)

{

 return document.getElementById(id)

}

function style(selector)

{

 return document.querySelector(selector).style

}

function by(selector)

{

 return document.querySelectorAll(selector)

}

And that, as they say, is that. If you write anything based on
this code or any other examples in this book, or have gained in
any other way from it, then I am glad to have been of help, and
I thank you for reading this book.

Questions
1. Have you enjoyed learning from this book?

See “Chapter 22 Answers” in the Appendix A for the answer
to this question.

Appendix A. Solutions to
the Chapter Questions

Chapter 1 Answers
1.

A web server (such as Apache), a server-side scripting
language (PHP), a database (MySQL), and a client-side
scripting language (JavaScript).

2.

HyperText Markup Language: the web page itself,
including text and markup tags.

3.

Like nearly all SQL-based database engines, MySQL
accepts commands in Structured Query Language (SQL).
SQL is the way that every user (including a PHP program)
communicates with MySQL.

4.

PHP runs on the server, whereas JavaScript runs on the
client. PHP can communicate with the database to store
and retrieve data, but it can’t alter the user’s web page
quickly and dynamically. JavaScript has the opposite
benefits and drawbacks. With Node.js, JavaScript can also
be used on the server.

5.

Cascading Style Sheets: styling and layout rules applied to
the elements in an HTML document.

6.

Probably the most interesting new elements in HTML5 are
<audio>, <video>, and <canvas>, although there are
many others, such as <article>, <summary>, <footer>.

7.

Some of these technologies are controlled by companies
that accept bug reports and fix the errors like any software
company. But open source software also depends on a
community, so your bug report may be handled by any
user who understands the code well enough. You may
someday fix bugs in an open source tool yourself.

8.

It allows developers to concentrate on building the core
functionality of a website or web app, passing on to the
framework the task of making sure it always looks and
runs its best, regardless of the platform (whether Linux,
macOS, Windows, iOS, or Android), the dimensions of the
screen, or the browser it runs.

9.

The event-driven model of Node.js is superior to the
Apache web server mainly because it is nonblocking, and
therefore a substantially greater number of connections can
be supported.

Chapter 2 Answers
1.

WAMP stands for Windows, Apache, MySQL, PHP. The M
in MAMP stands for Mac instead of Windows, and the L in
LAMP stands for Linux. They all refer to a complete
solution for hosting dynamic web pages.

2.

SFTP stands for SSH File Transfer Protocol (sometimes
Secure File Transfer Protocol). An SFTP program, similar
to an FTP program, is used to transfer files back and forth
between a client and a server but unlike FTP, SFTP is
secure.

3.

Transferring files to a remote server to update them can
substantially increase development time if this action is
carried out many times and the internet connection is slow.

4.

Dedicated code editors are smart and can highlight
problems in your code before you run it.

Chapter 3 Answers
1.

The tag used is <?php...?>. It can be shortened to <?...?
>, but that is not recommended practice.

2.

You can use // for a single-line comment or /*...*/ to
span multiple lines.

3.

All PHP statements must end with a semicolon (;).

4.

With the exception of constants, all PHP variables must
begin with $.

5.

A variable holds a value that can be a string, a number, or
other data.

6.

$variable = 1 is an assignment statement, whereas the
== in $variable == 1 and the === in $variable === 1
is a comparison operator. Use $variable = 1 to set the
value of $variable. Use $variable === 1 to find out
later in the program whether $variable equals the number
1. If you use $variable == 1, it returns true even if
$variable is a string "1", which can cause unexpected
bugs. If you mistakenly use $variable = 1 where you
meant to do a comparison, it will do two things you
probably don’t want: set $variable to 1 and return a true
value all the time, no matter its previous value.

7.

In PHP, the hyphen is reserved for the subtraction,
decrement, and negation operators. A construct like
$current-user would be harder to interpret if hyphens
were also allowed in variable names, and in any case
would lead programs to be ambiguous.

8.

Yes, variable names are case-sensitive. $This_Variable is
not the same as $this_variable.

9.

You cannot use spaces in variable names, as this would
confuse the PHP parser. Instead, try using the _
(underscore), or use camelCase notation.

10.

You can use type casting to convert the type, for example
like $number = (int)$string. However, if type
declarations are not used and you want to convert one
variable type to another, reference it and PHP will
automatically convert it for you.

11.

There is no difference between ++$j and $j++ unless the
value of $j is being tested, assigned to another variable, or
passed as a parameter to a function. In such cases, ++$j
increments $j before the test or other operation is
performed, whereas $j++ performs the operation and then
increments $j.

12.

Generally, the operators && and and are interchangeable
except where precedence is important, in which case &&

has a high precedence, while and has a low one.

13.

You can use multiple lines within quotation marks or the
<<<_END..._END; construct to create a multiline echo or
assignment. In the latter case, the closing tag must be on a
line by itself with nothing before or after it.

14.

You cannot redefine constants because, by definition, once
defined they retain their value until the program
terminates.

15.

You can use \' or \" to escape either a single or double
quote.

16.

The echo and print commands are similar in that they are
both constructs, except that print behaves like a PHP
function and takes a single argument, while echo can take
multiple arguments.

17.

The purpose of functions is to separate discrete sections of
code into their own self-contained sections that can be
referenced by a single function name.

18.

You can make a variable accessible to all parts of a PHP
program by declaring it as global. However this is not a
recommended approach in production code.

19.

If you generate data within a function, you can convey the
data to the rest of the program by returning a value or
modifying a global variable.

20.

When you combine a string with a number, the result is
another string.

Chapter 4 Answers
1.

When converting to string, TRUE is represented as the
string value "1", and FALSE is represented as an empty
string, so "1" and "" will be printed instead.

2.

The simplest forms of expressions are literals (such as
numbers and strings) and variables, which simply evaluate
to themselves.

3.

The difference between unary, binary, and ternary
operators is the number of operands each requires (one,
two, and three, respectively).

4.

The best way to force your own operator precedence is to
place parentheses around subexpressions that you wish to
give high precedence.

5.

Operator associativity refers to the direction of processing
(left to right or right to left).

6.

Use the identity operator when you wish to avoid PHP’s
automatic operand type changing (also called type
casting), and the bugs it could introduce.

7.

The three conditional statement types are if, switch, and
the ?: operator.

8.

To skip the current iteration of a loop and move to the next
one, use a continue statement.

9.

The difference between for and while is that loops using
for statements support two additional parameters to
control the loop handling.

10.

Most conditional expressions in if and while statements
are literals (or Booleans) and therefore trigger execution
when they evaluate to TRUE. Numeric expressions trigger
execution when they evaluate to a nonzero value. String
expressions trigger execution when they evaluate to a
nonempty string. A NULL value is evaluated as false and
therefore does not trigger execution.

Chapter 5 Answers
1.

Using functions prevents the need to copy or rewrite
similar code sections many times over by combining sets
of statements so they can be called by a simple name.

2.

By default, a function can return a single value. But by
utilizing arrays, references, and global variables, it can
return any number of values.

3.

When you use a variable by name, such as by assigning its
value to another variable or by passing its value to a
function, its value is copied. The original does not change
when the copy is changed. But if you reference a variable,
only a pointer (or reference) to its value is used so that a
single value is referenced by more than one name.
Changing the value of the reference will change the
original as well.

4.

Scope refers to which parts of a program can access a
variable. For example, a variable of global scope can be
accessed by all parts of a PHP program.

5.

To incorporate one file within another, you can use the
include or require directives or their safer variants,
include_once and require_once.

6.

A function is a set of statements referenced by a name that
can receive and return values. An object may contain zero

or many functions (which are then called methods) as well
as variables (which are called properties), all combined in
a single unit.

7.

To create a new object in PHP, use the new keyword like
this:

$object = new Class;

8.

To create a subclass, use the extends keyword with syntax
such as this:

class SubClass extends ParentClass { ... }

9.

To cause an object to be initialized when you create it, you
can call a piece of initializing code by creating a
constructor method called __construct within the class
and place your code there.

10.

Using properties not explicitly declared emits a
deprecation notice starting with PHP 8.2. Previously, they
were implicitly declared upon first use. But declaring them
has always been considered good practice as it helps with
code readability and debugging and is especially useful to
other people who may have to maintain your code.

Chapter 6 Answers
1.

A numeric array can be indexed numerically using
numbers or numeric variables. An associative array uses
alphanumeric identifiers to index elements.

2.

The main benefit of the array keyword is that it enables
you to assign several values at a time to an array without
repeating the array name.

3.

Besides using the foreach loop to walk through an
associative array, you can also use functions like key,
current, and next to code your own way of walking
through an array. Calling next modifies the internal array
pointer, but using foreach does not.

4.

To create a multidimensional array, you need to assign
additional arrays to elements of the parent array.

5.

You can use the count function to count the number of
elements in an array.

6.

The purpose of the explode function is to extract sections
from a string that are separated by an identifier, such as
extracting words separated by spaces within a sentence.

7.

To reset PHP’s internal pointer into an array back to the
first element, call the reset function.

Chapter 7 Answers
1.

The conversion specifier you would use to display a
floating-point number is %f.

2.

To take the input string "Happy Birthday" and output the
string "**Happy", you could use a printf statement such
as this:

printf("%'*7.5s", "Happy Birthday");

3.

To send the output from printf to a variable instead of to
a browser, you would use sprintf instead.

4.

To create a Unix timestamp for 7:11 a.m. on May 2, 2025,
you could use this command:

$timestamp = mktime(7, 11, 0, 5, 2, 2025);

5.

You would use the w+ file access mode with fopen to open
a file in write and read mode, with the file truncated and
the file pointer at the start.

6.

The PHP command for deleting the file file.txt is:

unlink('file.txt');

7.

The PHP function file_get_contents is used to read in
an entire file in one go. It will also read a file from across
the internet if provided with a URL.

8.

The PHP superglobal associative array $_FILES contains
the details about uploaded files.

9.

The PHP exec function enables running system
commands.

10.

To turn any special characters returned by the system into
ones that HTML can understand and properly display, use
the htmlspecialchars function.

Chapter 8 Answers
1.

The semicolon in MySQL separates or ends commands. If
you forget to enter it, MySQL will issue a prompt and wait
for you to enter the semicolon.

2.

To see the available databases, type SHOW databases. To
see tables within a database that you are using, type SHOW
tables. (These commands are case-insensitive.)

3.

To create this new user, use the GRANT command like this:

GRANT PRIVILEGES ON newdatabase.* TO 'newuser'@'localhost'

 IDENTIFIED BY 'newpassword';

4.

To view the structure of a table, type DESCRIBE
tablename.

5.

The purpose of a MySQL index is to substantially decrease
database access times by adding metadata to the table
about one or more key columns, which can then be quickly
searched to locate rows within a table.

6.

A FULLTEXT index enables natural-language queries to find
keywords, wherever they are in the FULLTEXT column(s),
in much the same way as using a search engine.

7.

A stopword is a word that is so common that it is
considered not worth including in a FULLTEXT index or
using in searches. However, it is included in searches when
it is part of a larger string bounded by double quotes.

8.

SELECT DISTINCT essentially affects only the display,
choosing a single row and eliminating all the duplicates.
GROUP BY does not eliminate rows but combines all the
rows that have the same value in the column. Therefore,
GROUP BY is useful for performing an operation such as
COUNT on groups of rows. SELECT DISTINCT is not useful
for that purpose.

9.

To return only those rows containing the word Langhorne
somewhere in the column author of the table classics, use
a command such as this:

SELECT * FROM classics WHERE author LIKE "%Langhorne%";

10.

When you’re joining two tables together, they must share
at least one common column, such as an ID number or, as
in the case of the classics and customers tables, the isbn
column.

Chapter 9 Answers
1.

The term relationship refers to the connection between two
pieces of data that have some association, such as a book
and its author or a book and the customer who bought the
book. A relational database such as MySQL specializes in
storing and retrieving such relationships.

2.

The process of removing duplicate data and optimizing
tables is called normalization.

3.

The three rules of First Normal Form are:

There should be no repeating columns containing the
same kind of data.

All columns should contain a single value.

There should be a primary key to uniquely identify
each row.

4.

To satisfy Second Normal Form, columns whose data
repeats across multiple rows should be removed to their
own tables.

5.

In a one-to-many relationship, the primary key from the
table on the “one” side must be added as a separate column
(a foreign key) to the table on the “many” side.

6.

To create a database with a many-to-many relationship,
you create an intermediary table containing keys from two
other tables. The other tables can then reference one
another via the third.

7.

To initiate a MySQL transaction, use the BEGIN or START
TRANSACTION command. To terminate a transaction and
cancel all actions, issue a ROLLBACK command. To
terminate a transaction and commit all actions, issue a
COMMIT command.

8.

To examine how a query will work in detail, you can use
the EXPLAIN command.

9.

To back up the database publications to a file called
publications.sql, you would use a command such as:

mysqldump -u user -ppassword publications > publications.sql

Chapter 10 Answers
1.

To connect to a MySQL database with PDO, create a new
object of the PDO class, passing the attributes, username,
password, and options. A connection object will be
returned on success.

2.

To submit a query to MySQL using PDO, ensure you have
first created a connection object to a database, and then
call its query method, passing the query string.

3.

The PDO::FETCH_NUM style of the fetch method can be
used to return a row as an array indexed by column
number.

4.

You can manually close a PDO connection by assigning
the value null to the PDO object used to connect to the
database.

5.

When adding a row to a table with an AUTO_INCREMENT
column, you should pass the value null to that column.

6.

To escape special characters in strings, you can call the
quote method of a PDO connection object, passing it the
string to be escaped. Of course, for security, using
prepared statements will serve you best.

7.

The best way to ensure database security when accessing it
is to use placeholders and prepared statements.

Chapter 11 Answers
1.

The associative arrays used to pass submitted form data to
PHP are $_GET for the GET method and $_POST for the
POST method.

2.

The difference between a text box and a text area is that
although they both accept text for form input, a text box is
a single line, whereas a text area can be multiple lines and
include word wrapping.

3.

To offer three mutually exclusive choices in a web form,
you should use radio buttons, because checkboxes allow
multiple selections.

4.

You can submit a group of selections from a web form
using a single field name by using an array name with
square brackets, such as choices[], instead of a regular
field name. Each value is then placed into the array, whose
length will be the number of elements submitted.

5.

To submit a form field without the user seeing it, place it in
a hidden field using the attribute type="hidden".

6.

You can encapsulate a form element and supporting text or
graphics, making the entire unit selectable with a mouse
click, by using the <label> and </label> tags.

7.

To prevent XSS attacks, that is, to convert HTML into a
format that can be displayed but will not be interpreted as
HTML by a browser, use the PHP htmlentities or
htmlspecialchars function.

8.

You can help users complete fields with data they may
have submitted elsewhere by using the autocomplete
attribute, which prompts the user with possible values.

9.

To ensure that a form is not submitted with missing data,
you can apply the required attribute to essential inputs.

Chapter 12 Answers
1.

Cookies should be transferred before a web page’s HTML
because they are sent as part of the headers.

2.

To store a cookie in a web browser, use the setcookie
function.

3.

To destroy a cookie, reissue it with setcookie, but set its
expiration date in the past.

4.

Using HTTP authentication, the username and password
are stored in $_SERVER['PHP_AUTH_USER'] and
$_SERVER['PHP_AUTH_PW'].

5.

The password_hash function is a powerful security
measure because it is a one-way function that converts a
string to a long hexadecimal string of numbers that cannot
be converted back quickly, and is therefore very hard to
crack as long as strong passwords are required from users
(for example, at least eight characters in length, including
randomly placed numbers and punctuation marks).

6.

When a string is salted, extra characters known only by the
web server (or by the programmer if they are self-salting
the code) are added to it before hash conversion (this
should normally be left up to PHP to handle for you,
though, don’t add any extra salt when you’re using the
password_hash function for example). This ensures that

users with the same password will not have the same hash
and prevents the use of precomputed hash tables.

7.

A PHP session is a group of variables unique to the current
user, stored on the server, passed along with successive
requests so that the variables remain available as the user
visits different pages.

8.

To initiate a PHP session, use the session_start
function.

9.

Session hijacking is where a hacker somehow discovers an
existing session ID and attempts to take it over.

10.

Session fixation is when an attacker attempts to force a
user to log in using a valid session ID the attacker has
obtained earlier, thus compromising the connection’s
security.

Chapter 13 Answers
1.

To enclose JavaScript code, you use <script> and
</script> tags.

2.

You can include JavaScript code from other files in your
documents by either copying and pasting them or, more
commonly, including them as part of a <script
src='filename.js'> tag.

3.

The equivalent of the echo and print commands used in
PHP for quick output are the JavaScript functions
console.log, alert, document.write, or writing
directly into elements.

4.

To create a comment in JavaScript, preface it with // for a
single-line comment or surround it with /* and */ for a
multiline comment.

5.

The JavaScript string concatenation operator is the +
symbol.

6.

Within a JavaScript function, you can define a variable that
has local scope by preceding it with the let or var
keywords upon first assignment.

7.

To display the URL assigned to the link with an id of
thislink in all main browsers, you can use either of these
commands:

console.log(document.getElementById('thislink').href)

console.log(thislink.href)

8.

The commands to change to the previous page in the
browser’s history array are:

history.back()

history.go(-1)

9.

To replace the current document with the main page at the
O’Reilly website, you could use this command:

document.location.href = 'http://oreilly.com'

http://oreilly.com/

Chapter 14 Answers
1.

The most noticeable difference between Boolean values in
PHP and JavaScript is that PHP recognizes the keywords
TRUE, true, FALSE, and false, whereas only true and
false are supported in JavaScript. Additionally, in PHP
when converted to string, TRUE has a value of "1", and
FALSE is an empty string; in JavaScript they are
represented by string values "true" and "false".

2.

Unlike PHP, no character (such as $) is used to define a
JavaScript variable name. JavaScript variable names can
start with and contain uppercase and lowercase letters as
well as underscores; names can also include digits but not
as the first character.

3.

The difference between unary, binary, and ternary
operators is the number of operands each requires (one,
two, and three, respectively).

4.

The best way to force your own operator precedence is to
surround the parts of an expression to be evaluated first
with parentheses.

5.

Use the identity operator when you wish to avoid
JavaScript’s automatic operand type changing and the bugs
it could introduce.

6.

The simplest forms of expressions are literals (such as
numbers and strings) and variables, which simply evaluate
to themselves.

7.

The three conditional statement types are if, switch, and
the ?: operator.

8.

Most conditional expressions in if and while statements
are literals or Booleans and therefore trigger execution
when they evaluate to true. Numeric expressions trigger
execution when they evaluate to a nonzero value. String
expressions trigger execution when they evaluate to a
nonempty string. A NULL value is evaluated as false and
therefore does not trigger execution.

9.

Loops using for statements give you extensive control
over the loop as they support two additional parameters to
control the loop handling. You can use while loops if you
have a single variable to control the loop.

10.

In JavaScript, to cast one type to another you can use one
of the built-in functions such as parseInt or parseFloat.

Chapter 15 Answers
1.

JavaScript functions and variable name are case-sensitive.
The variables Count, count, and COUNT are all different.

2.

To write a function that accepts and processes an unlimited
number of parameters, use the rest parameter syntax
...params, or as the less preferred option, access
parameters through the arguments array, which is a
member of all functions.

3.

One way to return multiple values from a function is to
place them all inside an array and return the array.

4.

When defining a class, use the this keyword to refer to
the current object.

5.

Yes, if using the recommended class syntax. If functions
are used to create the object, the methods do not have to be
defined within the class definition. If a method is defined
outside the constructor, the method name must be assigned
to the this object within the class definition.

6.

New objects are created via the new keyword.

7.

To create a multidimensional array, place subarrays inside
the parent array.

8.

In JavaScript, objects can be used to emulate “associative
arrays,” so you use the object syntax (key : value,
within curly braces) to create such “array,” as in:

assocarray = {

 forename : "Paul",

 surname : "McCartney",

 group : "The Beatles"

}

9.

A statement to sort an array of numbers into descending
numerical order would look like this, using an anonymous
arrow function:

numbers.sort((a, b) => b - a)

Chapter 16 Answers
1.

You can send a form for validation prior to submitting it by
attaching the submit event handler to the form using the
addEventListener method. To prevent the form values
being submitted on any validation error, use
event.preventDefault().

2.

To match a string against a regular expression in
JavaScript, use the test method.

3.

Regular expressions to match characters not in a word
could be any of /[^\w]/, /[\W]/, /^\w/, /\W/ /[^a-zA-
Z0-9_]/, and so on.

4.

A regular expression to match either of the words fox or fix
could be /f[oi]x/.

5.

A regular expression to match any single word followed by
any nonword character could be /\w+\W/g.

6.

A JavaScript function using regular expressions to test
whether the word fox exists in the string The quick
brown fox could be:

console.log(/fox/.test("The quick brown fox"))

7.

A PHP function using a regular expression to replace all
occurrences of the word the in The cow jumps over the
moon with the word my could be as follows:

$s = preg_replace("/the/i", "my", "The cow jumps over the

moon");

8.

The HTML attribute used to precomplete form fields with
a value is value, which is placed within an <input> tag
and takes the form value="value".

Chapter 17 Answers
1.

The fetch function can be used for conducting
asynchronous communication between a server and
JavaScript client.

2.

You can pass an options object with method: "POST" and
body: data properties as the second parameter when
calling fetch.

3.

The fetch function returns an object of class Promise,
which represents an asynchronous operation. You can use
its then method to pass a code, as an arrow function for
example, that will be called when the operation completed
successfully.

4.

The function to get JSON data may be an arrow function
and can be as simple as this (it will return a promise
object):

response => response.json()

5.

After calling the fetch function that returns a promise,
pass an arrow function that returns the JSON data as the
parameter to the then method. The json method also
returns a promise. Then pass another arrow function to the
then call on the promise, which can look like this:

data => {

 // do something with data.a and data.b

}

6.

The origin of the URL https://book.example/ch18?q=6 is
https://b ook .exa mple as origin consists of schema +
domain + port if specified, which is not the case here.

7.

If a JavaScript code running on https://example.com/map
would like to send an asynchronous request
to https://www.example.com/data, then it would be a cross-
origin request, not a same-origin one, because the origin of
https://example.com/map (which is https://example.com)
doesn’t match the origin of https://www.example.com/data
(which is https://www.example.com). Note that unlike the
former URL, the latter one uses the www subdomain.

8.

The best way for JavaScript on http://localhost/info to
access the response from https://example.com/data would
be to add one of the two following HTTP headers to the
response:

Access-Control-Allow-Origin: http://localhost

Access-Control-Allow-Origin: *

Chapter 18 Answers
1.

The CSS operators ^=, $=, and *= match the start, end, or
any portion of a string, respectively.

2.

The property you use to specify the size of a background
image is background-size, like this:

background-size:800px 600px;

3.

You can specify the radius of a border using the border-
radius property:

border-radius:20px;

4.

To flow text over multiple columns, use the column-
count, column-gap, and column-rule properties, like
this:

column-count:3;

column-gap :1em;

column-rule :1px solid black;

5.

The four functions you can use to specify CSS colors are
hsl, hsla, rgb, and rgba. For example:

color:rgba(0%,60%,40%,0.4);

6.

To create a gray shadow under some text, offset diagonally
to the bottom right by 5 pixels, with a blurring of 3 pixels,
use this declaration:

text-shadow:5px 5px 3px #888;

7.

You can indicate that text is truncated with an ellipsis by
using this declaration:

text-overflow:ellipsis;

8.

To include a Google web font such as Lobster in a web
page, first select it from the Google Fonts website, then
copy the provided <link> tag into the <head> of your
HTML document. It will look something like this:

<link href='https://fonts.googleapis.com/css?family=Lobster'

 rel='stylesheet'>

You can then refer to the font in a CSS declaration:

h1 { font-family:'Lobster', arial, serif; }

9.

The CSS declaration you would use to rotate an object by
90 degrees is:

https://fonts.google.com/

transform:rotate(90deg);

10.

To set up a transition on an object so that when any of its
properties are changed the change will transition
immediately and linearly over the course of half a second,
use this declaration:

transition:all .5s linear;

11.

To create a flexbox container set its display property to
flex.

12.

To define how flex items are spaced along the main axis of
a flexbox, use the justify-content property of the
container.

13.

To control the alignment of flex items along the cross axis
of a flexbox container use the align-items property of
the container.

14.

The two properties that determine how much a flexbox
element can grow and shrink are flex-grow and flex-
shrink.

15.

To change the order of elements in a flexbox container,
assign numeric values to the order properties of the
individual elements, with lower values appearing first.

16.

To set up a CSS grid layout, set the display property of
the container object to either grid or inline-grid.

17.

To specify the flow direction of a grid container, use the
container’s grid-auto-flow property.

18.

You can place items into a grid by using the items’ grid-
column and grid-row properties.

19.

You can set the spacing of a grid with the gap property,
which also has an older property name of grid-gap; both
work the same way.

20.

You can align grid items vertically and horizontally using
the justify-items and align-items properties.

Chapter 19 Answers
1.

The function to abbreviate DOM access uses the
getElementById method, like this:

function getById(id)

{

 return document.getElementById(id)

}

Or it can use the querySelector method, for example like
this:

function getBy(selector)

{

 return document.querySelector(selector)

}

Given an element with an ID box, you’d then call the
functions as follows:

getById('box')

getBy('#box') // note the # prefix

2.

You can modify a CSS attribute of an object using the
setAttribute function, like this:

myobject.setAttribute('font-size', '16pt')

You can also (usually) modify an attribute directly (using
slightly modified property names where required), like
this:

myobject.fontSize = '16pt'

3.

The properties that provide the width and height available
in a browser window are window.innerHeight and
window.innerWidth.

4.

To make something happen when the mouse passes over
and out of an object, attach the mouseover and mouseout
events.

5.

To create a new element, use code such as:

elem = document.createElement('span')

To add the new element to the DOM, use code such as:

document.body.appendChild(elem)

6.

To make an element invisible, set its visibility property
to hidden (set it to visible to restore it again). To
collapse an element’s dimensions to zero, set its display
property to none (setting this property to block is one way
to restore it to its original dimensions).

7.

To set up a single event at a future time, call the
setTimeout function, passing it the code or function name
to execute and the time delay in milliseconds.

8.

To set up repeating events at regular intervals, use the
setInterval function, passing it the code or function
name to execute and the time delay between repeats in
milliseconds.

9.

To release an element from its location in a web page to
enable it to be moved around, set its position property to
relative, absolute, or fixed. To restore it to its original
place, set the property to static.

10.

To achieve an animation rate of 50 frames per second, you
should set a delay between interrupts of 20 milliseconds.
To calculate this value, divide 1,000 milliseconds by the
desired frame rate.

Chapter 20 Answers
1.

You can incorporate the React scripts in your web page by
downloading the files and serving them from your own
web server, or by using a CDN such as unpkg.com. Then
load the scripts using script tags in your HTML
document.

2.

To incorporate XML into your React JavaScript, you first
need to load the Babel extension, either locally or from a
CDN, using a script tag.

3.

JSX JavaScript <script> sections of code require
type="text/babel" to work.

4.

You can extend React to your code either as a class using
class Name extends React.Component or simply by
returning code to be rendered by a function’s return
statement. In both cases, ReactDOM.render must be called
to initiate the rendering.

5.

In React, pure code doesn’t change its inputs, whereas
code that does change inputs is considered impure.

6.

React keeps track of state with the props object and its
attributes.

7.

To embed an expression within JSX code, you place it
within curly braces, like this: Hello {props.name}.

8.

Once a class has been constructed, you can change the
state of a value only by using the setState function.

9.

To enable referring to props using the this keyword
within a constructor, you must first call the super method,
passing it props, like this: super(props).

10.

You can create a conditional statement in JSX using the &&
operator after the expression. For an if...then...else
statement, you can use the ternary ?: operator.

Chapter 21 Answers
1.

After receiving a request for a file from a web browser and
passing the request to the filesystem, Node.js returns to
listening for new browser requests. Only when the
filesystem sends an event to indicate the requested file is
ready does it send the file contents back to the browser.

2.

To include a prewritten module in Node.js, load it using
the import method.

3.

Node.js uses the http module to manage HTTP
communications, the url module for URL parsing, and the
fs module for accessing the local filesystem.

4.

The default HTTP port a server listens to is port 80. To
avoid port clashes multiple servers may use different port
numbers, such as port 8000, which is often used for
proxies. Note that the default port for HTTPS is 443.

5.

The createServer method of an http module is called to
create a new server object.

6.

Headers, if any, must be sent before returning data to a
web browser. One way to do this is by calling the
writeHead method of the server object

7.

To terminate a Node.js connection with a web browser, call
the end method of the response object passed as a
parameter to the createServer function of the http
module.

8.

To start a Node.js server, from the command line type
node server.js, where server.js is the filename of the
server to run. Use the .mjs file extension to run a module.

9.

To manually terminate a Node.js server, press Ctrl-C at the
command line.

10.

To write from Node.js to the terminal window command
line, pass a string to the console.log or console.error
functions.

11.

To add external Node.js modules to a project, use the npm
program, like this: npm install packagename.

12.

To access a MySQL database with Node.js, first install the
mysql2 package using npm with the command npm
install mysql2, then import it into a project using the
import method:

import mysql from 'mysql2/promise'

13.

To create a connection to MySQL (once you have installed
and imported the module) call the createConnection

method of the mysql object, like this:

const connection = await mysql.createConnection({

 host: 'localhost',

 user: 'node',

 password: 'letmein',

 database: 'publications'

})

14.

To use Node.js to query a MySQL database, call the
execute method of an already created connection object,
passing it the query string with placeholders.

15.

To terminate a connection to a MySQL database, call the
end method of its connection object.

Chapter 22 Answers
1.

The answer to this question is entirely up to you. If you
have enjoyed this book, please tell your friends and leave a
review at an online bookstore. If you have any questions,
comments, suggestions, or addenda, please visit the book’s
O’Reilly catalog page and leave them there. Thanks for
reading!

https://oreil.ly/learning-php-mysql-js-7e

Index

Symbols

! (not) logical operator

JavaScript, Logical Operators, Logical operators

PHP, Logical operators, Logical operators-Logical
operators

!= (not equal to) operator

JavaScript, Comparison Operators, Equality operators

PHP, Comparison operators, Equality operators

!== (not identical to) operator

JavaScript, Comparison Operators, Equality operators

PHP, Comparison operators

” (quotation mark, double)

JavaScript escape character, Escape Characters

PHP

printf parameter string, Using printf

variable value in string, String types

“> MySQL prompt, The semicolon

#id (ID) selectors (CSS), Attribute Selectors

$ (dollar) symbol

JavaScript variable and function names, Variables

PHP variables, The $ symbol

porting into JavaScript, Variables

regular expressions, Some More Complicated Examples

$= operator (CSS), The $= Operator

$GLOBALS array (PHP), Superglobal variables

$_COOKIE array (PHP), Superglobal variables

$_ENV array (PHP), Superglobal variables

$_FILES array (PHP), Superglobal variables, Using $_FILES

social networking site profile image, Adding a Profile
Image

do not use for image type, Adding a Profile Image

$_GET array (PHP), Superglobal variables, The $_POST
Array

asynchronous program

GET method, Using GET Instead of POST-Using
GET Instead of POST

JSON requests, Sending JSON Requests-Sending
JSON Requests

sanitizing via htmlentities function, Superglobals and
security, Preventing JavaScript Injection into HTML,
Sanitizing Input

social networking site

adding or dropping friends, Adding and Dropping
Friends

viewing a user profile, Viewing a User’s Profile

$_POST array (PHP), Superglobal variables, The $_POST
Array

asynchronous program POST method, Your First
Asynchronous Program-The Server Half of the
Asynchronous Process

sanitizing via htmlentities function, Superglobals and
security, Preventing JavaScript Injection into HTML,
Sanitizing Input

social networking site

About Me text, Adding the “About Me” Text

username check, checkuser.php

$_REQUEST array (PHP), Superglobal variables

$_SERVER array (PHP), Superglobal variables

HTTP authentication, HTTP Authentication

example program, An Example Program-An
Example Program

htmlspecialchars function, HTTP Authentication

starting a session, Starting a Session

validating username and password, HTTP
Authentication

$_SESSION array (PHP), Superglobal variables, Starting a
Session-Starting a Session

IP address for session security, Preventing session
hijacking

user-agent string for session security, Preventing session
hijacking

% (modulus) operator

JavaScript, Arithmetic Operators

PHP, Arithmetic operators

% printf specifier (PHP), Using printf

% wildcard (MySQL), WHERE

%= (modulus assignment) operator

JavaScript, Assignment Operators

PHP, Assignment operators

&& (And) logical operator

JavaScript, Logical Operators, Logical operators

short-circuit evaluation, Logical operators

PHP, Logical operators

higher precedence than and, or, Logical operators

‘ (quotation mark, single)

JavaScript escape character, Escape Characters

PHP

literal strings, String types

printf argument string, Using printf

‘> MySQL prompt, The semicolon

()

functions

JavaScript, Functions, Anonymous Functions,
Arrow Functions

PHP, PHP Functions, Defining a Function

regular expression grouping, Grouping Through
Parentheses

* (asterisk) in regular expressions, Matching Through
Metacharacters

HTML tag match expressions, Wildcard Matching

* (multiplication) operator

JavaScript, Arithmetic Operators

PHP, Arithmetic operators

* (universal) selector (CSS), Attribute Selectors

*= (multiplication and assignment) operator

JavaScript, Assignment Operators

PHP, Assignment operators

*= (substring) operator (CSS), The *= Operator

+ (addition) operator

JavaScript, Arithmetic Operators

PHP, Arithmetic operators

+ (plus sign) in regular expressions, Matching Through
Metacharacters

HTML tag match expressions, Wildcard Matching

+ (string concatenation) operator (JavaScript), String
Concatenation

+ with MATCH…AGAINST Boolean mode, MATCH…
AGAINST in Boolean mode

++ (increment) operator

JavaScript, Arithmetic Operators, Incrementing,
Decrementing, and Shorthand Assignment, Operators

PHP, Arithmetic operators, Variable incrementing and
decrementing

+= (addition and assignment) operator

JavaScript, Assignment Operators, Incrementing,
Decrementing, and Shorthand Assignment

string concatenation, String Concatenation

PHP, Assignment operators, Variable Assignment

- (hyphen) for range in regular expressions, Indicating a Range

- (subtraction) operator

JavaScript, Arithmetic Operators

PHP, Arithmetic operators

- with MATCH…AGAINST Boolean mode, MATCH…
AGAINST in Boolean mode

— (decrement) operator

JavaScript, Arithmetic Operators, Incrementing,
Decrementing, and Shorthand Assignment, Operators

PHP, Arithmetic operators, Variable incrementing and
decrementing

-= (subtraction and assignment) operator

JavaScript, Assignment Operators, Incrementing,
Decrementing, and Shorthand Assignment

PHP, Assignment operators, Variable Assignment

-> for object access (PHP), Accessing Objects, Writing
Methods

-> MySQL prompt, The semicolon

. (dot) in regular expressions, Wildcard Matching

HTML tag match expressions, Wildcard Matching

matching the dot character, Wildcard Matching

. (period) in JavaScript, The Document Object Model

window object properties, Other Properties

. (string concatenation) operator (PHP), String concatenation

… (rest parameter) syntax (JavaScript), The rest parameter

example fixNames function, Returning a Value

… (spread) syntax (JavaScript), concat

.= (concatenation assignment) operator (PHP), Assignment
operators, String concatenation

/ (division) operator

JavaScript, Arithmetic Operators

PHP, Arithmetic operators

/ (forward slash)

/* and */ for multiline comments

JavaScript, Using Comments

PHP, Using Comments

// for single line comments

JavaScript, Using Comments

PHP, Using Comments

/*> MySQL prompt, The semicolon

/= (division and assignment) operator

JavaScript, Assignment Operators

PHP, Assignment operators

: bind variable prefix (PHP), Using Placeholders

: in associative arrays (JavaScript), Associative Arrays

:: (scope resolution) operator (PHP), Static Methods, Static
Properties

; (semicolon)

JavaScript, JavaScript and HTML Text, Semicolons

MySQL, The semicolon

none for PHP accessing MySQL, Building and
Executing a Query

\c after a semicolon, Canceling a command

PHP, Semicolons

for loops, for Loops

< (less than) operator

JavaScript, Comparison Operators, Comparison operators

PHP, Comparison operators, Comparison operators

<<< (heredoc) operator (PHP), Multiline Strings

example of form code, A Practical Example, Displaying
the Form

<<< (nowdoc) operator (PHP), Using a nowdoc

<= (less than or equal to) operator

JavaScript, Comparison Operators, Comparison operators

PHP, Comparison operators, Comparison operators

<> (not equal to) operator (PHP), Comparison operators

<?php and ?> (PHP), Using PHP, Incorporating PHP Within
HTML

<? and ?> deprecated, Incorporating PHP Within HTML

heredoc operator alternative, Displaying the Form

mysql login file, Creating a Login File

omitting closing tag, Incorporating PHP Within HTML

<noscript> and </noscript> tags (HTML), JavaScript and
HTML Text

<pre> and </pre> tags (HTML), Declaring a Class,
Multidimensional Arrays

<script> and </script> tags (HTML), Using JavaScript,
JavaScript and HTML Text

<script src= to load from file, Including JavaScript Files

example of use, Including the Functions

inline JavaScript instead, Inline JavaScript

<select> in forms (HTML), <select>-<select>

<style> and </style> (CSS), Using CSS

= (assignment) operator

JavaScript, Assignment Operators

not confusing with == operator, Comparison operators,
Equality operators

PHP, Assignment operators

== (equality) operator

JavaScript, Comparison Operators, Equality operators

not confusing with = operator, Comparison operators,
Equality operators

PHP, Comparison operators, Equality operators-Equality
operators

=== (strict equality) operator

JavaScript, Comparison Operators, Equality operators

PHP, Comparison operators, Equality operators-Equality
operators

validating username and password, HTTP
Authentication

=> (array assignment) operator (PHP), Assignment Using the
array Keyword

=> (arrow) functions (JavaScript), Arrow Functions

setTimeout calling, Passing an arrow function

> (greater than) operator

JavaScript, Comparison Operators, Comparison operators

PHP, Comparison operators, Comparison operators

> (redirect), Using mysqldump

mysqldump redirected to a file, Creating a Backup File

>= (greater than or equal to) operator

JavaScript, Comparison Operators, Comparison operators

PHP, Comparison operators, Comparison operators

? operator (PHP), The Difference Between the echo and print
Commands, The ? (or Ternary) Operator

as ternary operator, Operators, The ? (or Ternary)
Operator

? placeholder (MySQL), Using Placeholders-Using
Placeholders

? ternary operator

JavaScript, Operators, The ? Operator

PHP, Operators, The ? (or Ternary) Operator

@font-face (CSS), Web Fonts

[] (square brackets)

arrays

JavaScript, Arrays-Multidimensional Arrays

PHP, Numerically Indexed Arrays,
Multidimensional Arrays, Multidimensional Arrays

regular expressions

character classes, Character Classes

negation of a character class, Negation

\ (backslash)

JavaScript

characters tab, newline, return, Escape Characters

escaping characters in strings, Escape Characters

PHP

characters tab, newline, return, Escaping characters

escaping characters in strings, Escaping characters

regular expressions escaping characters, Wildcard
Matching

" (quote mark, double) escape character, Escape Characters

' (quote mark, single) escape character, Escape Characters

\? (HELP) command (MySQL), MySQL Commands

\b (backspace) character (JavaScript), Escape Characters

\c to cancel input (MySQL), Canceling a command

\d for digit in regular expressions, Indicating a Range

\f (form feed) character (JavaScript), Escape Characters

\h (HELP) command (MySQL), MySQL Commands

\n (newline) character, Escaping characters, Escape Characters

. wildcard in regular expressions, Wildcard Matching

\r (carriage return) character, Escaping characters, Escape
Characters

\s (STATUS) command (MySQL), MySQL Commands

\t (tab) character, Escaping characters, Escape Characters

\W (nonword character) match (regular expressions),
Summary of Metacharacters

\w (word character) match (regular expressions), Summary of
Metacharacters

\ (backslash) escape character, Escape Characters

^ beginning of the line (regular expressions), Some More
Complicated Examples

^ character class negation (regular expressions), Negation

^= (start of string) operator (CSS), The ^= Operator

__ (double underscore) in PHP, Predefined Constants, Writing
Methods

__CLASS__ constant (PHP), Predefined Constants

__DIR__ constant (PHP), Predefined Constants

__FILE__ constant (PHP), Predefined Constants

__FUNCTION__ constant (PHP), Predefined Constants

__LINE__ constant (PHP), Predefined Constants

__METHOD__ constant (PHP), Predefined Constants

__NAMESPACE__ constant (PHP), Predefined Constants

`> MySQL prompt, The semicolon

{ } (curly braces)

JavaScript

associative arrays, Associative Arrays

classes, Declaring a Class

const keyword, Using const

functions, Defining a Function, Defining a Function,
Declaring a Class, Anonymous Functions

if statements, The if Statement

let keyword, Using let

objects, JavaScript Objects

PHP

classes, Declaring a Class

do…while loops, do…while Loops

for loops, for Loops

functions, Functions, Defining a Function

if statements, The if Statement

switch statements, The switch Statement

switch statements, alternative syntax, Alternative
syntax

while loops, while Loops

|| (Or) logical operator

JavaScript, Logical Operators, Logical operators

PHP, Logical operators

higher precedence than and, or, Logical operators

A

addition (+) operator

JavaScript, Arithmetic Operators

PHP, Arithmetic operators

addition and assignment (+=) operator

JavaScript, Assignment Operators, Incrementing,
Decrementing, and Shorthand Assignment

string concatenation, String Concatenation

PHP, Assignment operators, Variable Assignment

adjacent sibling selectors (CSS), Attribute Selectors

Ajax (Asynchronous JavaScript and XML)

about Ajax, Using Asynchronous Communication

about JavaScript, Using JavaScript

cross-origin resource sharing, Cross-Origin Resource
Sharing (CORS)-Same-origin and cross-origin requests

Fetch API

about, The Fetch API

asynchronous program GET method, Using GET
Instead of POST-Using GET Instead of POST

asynchronous program POST method, Your First
Asynchronous Program-The Server Half of the
Asynchronous Process

JSON requests, Sending JSON Requests-Sending
JSON Requests

link to standard, The Fetch API

XMLHttpRequest object in JavaScript, Using
XMLHttpRequest

alert pop-up window for JavaScript output, Using alert

centering in browser window, Other Properties

error handling for input validation, The validate.html
Document (Part 1)

aliases in MySQL via AS keyword, Using AS

ALTER command (MySQL), MySQL Commands, The
AUTO_INCREMENT attribute

adding a FULLTEXT index, Creating a FULLTEXT
index

adding a new column, Adding a new column

primary key column, Primary keys

adding an auto-incrementing column, The
AUTO_INCREMENT attribute

adding an index to a column, Creating an Index

changing column data type, Changing the data type of a
column

removing a column, The AUTO_INCREMENT attribute,
Removing a column

renaming a column, Renaming a column

renaming a table, Renaming a table

AMPPS

macOS installation, Installing AMPPS on macOS

document root, Installing AMPPS on macOS

document root Hello World, Installing AMPPS on
macOS

PHP version, Installing AMPPS on macOS

serving pages from document root versus filesystem,
Accessing the Document Root (Windows), Installing
AMPPS on macOS

Windows installation, Installing AMPPS on Windows-
Installing AMPPS on Windows

alternative WAMPs, Alternative WAMPs

AMPPS documentation, Installing AMPPS on
Windows, Alternative WAMPs

configuration, Testing the Installation

document root described, Accessing the Document
Root (Windows)

document root Hello World, Accessing the
Document Root (Windows)

document root viewed, Testing the Installation

Microsoft Visual C++ Redistributable, Installing
AMPPS on Windows

PHP version, Installing AMPPS on Windows

testing the installation, Testing the Installation-
Testing the Installation

And (&&) logical operator

JavaScript, Logical Operators, Logical operators

short-circuit evaluation, Logical operators

PHP, Logical operators

higher precedence than and, or, Logical operators

and logical operator (PHP), Logical operators, Logical
operators-Logical operators

lower precedence than && and ||, Logical operators

AND operator in MySQL WHERE queries, Using Logical
Operators

Android applications via React Native, React Native

Angular, Introduction to React

animation via time-based events, Using Time-Based Events
for Animation-Using Time-Based Events for Animation

anonymous functions (JavaScript), Anonymous Functions

Apache web server

about, The Apache Web Server

Node.js as alternative to, Node.js: An Alternative to
Apache, Introduction to Node.js

Apache still relevant, Introduction to Node.js

open source, About Open Source

secure web server documentation online, Session Security

server setup (see development server setup)

appendChild function (JavaScript), Adding New Elements

arguments array (JavaScript), The arguments array

arithmetic operators

JavaScript, Arithmetic Operators, Operators

PHP, Operators

arrays

index starting from zero, Two-dimensional arrays

JavaScript, Arrays, Arrays-sort

associative arrays, Associative Arrays

creating a new array, Arrays, Assignment using the
array keyword

element values assigned, Assigning element values

functions returning arrays, Returning an Array

methods, Using Array Methods-sort

multidimensional arrays, Arrays, Multidimensional
Arrays

passed to functions by reference, Local Variables

split function, Explicit Casting

spread syntax, concat

PHP, Arrays-Two-dimensional arrays

$GLOBALS array, Superglobal variables

$_COOKIE array, Superglobal variables

$_ENV array, Superglobal variables

$_FILES array, Superglobal variables, Using
$_FILES, Adding a Profile Image, Adding a Profile
Image

$_GET array, Superglobal variables, The $_POST
Array

$_POST array, Superglobal variables, The $_POST
Array

$_REQUEST array, Superglobal variables

$_SERVER array, Superglobal variables, HTTP
Authentication, HTTP Authentication, HTTP
Authentication, An Example Program-An Example
Program, Starting a Session

$_SESSION array, Superglobal variables, Starting a
Session-Starting a Session, Preventing session
hijacking, Preventing session hijacking

array functions, Using Array Functions-end

assignment (=>) operator, Assignment Using the
array Keyword

assignment via array keyword, Assignment Using
the array Keyword

associative arrays, Associative Arrays, Fetching a
Row While Specifying the Style

creating a new array, Arrays

foreach…as loops, The foreach…as Loop-The
foreach…as Loop, reset

functions returning arrays, Returning an Array

multidimensional arrays, Multidimensional Arrays-
Multidimensional Arrays

numerically indexed arrays, Numerically Indexed
Arrays-Numerically Indexed Arrays

superglobal variables, Superglobal variables

two-dimensional arrays, Two-dimensional arrays-
Two-dimensional arrays

array_intersect function (PHP), friends.php

arrow (=>) functions (JavaScript), Arrow Functions

setTimeout calling, Passing an arrow function

AS keyword (MySQL), Using AS

assignment (=) operator

JavaScript, Assignment Operators

not confusing with == operator, Comparison operators,
Equality operators

PHP, Assignment operators

assignment operators

JavaScript, Assignment Operators, Operators

shorthand assignments, Incrementing,
Decrementing, and Shorthand Assignment

PHP, Assignment operators

multiple-assignment statement, Associativity

variable assignment, Variable Assignment-Variable
incrementing and decrementing

associative arrays

JavaScript, Associative Arrays

PHP, Associative Arrays

assignment via array keyword, Assignment Using
the array Keyword

column reference easier than numeric, Fetching a
Row While Specifying the Style

foreach…as loops, The foreach…as Loop

multidimensional arrays, Multidimensional Arrays

associativity of operators

JavaScript, Associativity

PHP, Associativity

asterisk (*) in regular expressions, Matching Through
Metacharacters

HTML tag match expressions, Wildcard Matching

asynchronous communication

about, Using Asynchronous Communication

Ajax in JavaScript, Using JavaScript

about Ajax, Using Asynchronous Communication

cross-origin resource sharing, Cross-Origin
Resource Sharing (CORS)-Same-origin and cross-
origin requests

example of username check, Bringing It All Together-
Bringing It All Together

social networking site, signup.php

Fetch API in JavaScript

about, The Fetch API

asynchronous program GET method, Using GET
Instead of POST-Using GET Instead of POST

asynchronous program POST method, Your First
Asynchronous Program-The Server Half of the
Asynchronous Process

cross-origin resource sharing, Cross-Origin
Resource Sharing (CORS)-Same-origin and cross-
origin requests

JSON requests, Sending JSON Requests-Sending
JSON Requests

link to standard, The Fetch API

frameworks React, Axios, jQuery, Using Frameworks for
Asynchronous Communication

JavaScript handling, The Benefits of PHP, MySQL,
JavaScript, CSS, and HTML

Node.js, Introduction to Node.js

XMLHttpRequest object in JavaScript, Using
XMLHttpRequest

attribute selectors (CSS), Attribute Selectors

authentication (HTTP), HTTP Authentication-An Example
Program

example program, An Example Program-An Example
Program

htmlspecialchars function, HTTP Authentication, An
Example Program-An Example Program

storing usernames and passwords, Storing Usernames and
Passwords-Using password_verify

documentation online, Using password_hash

size of storage for hashes, Using password_hash

verifying password against hash, Using
password_verify, login.php

validating username and password, HTTP Authentication,
login.php

autocomplete attribute in forms (HTML), The autocomplete
attribute

documentation online, The autocomplete attribute

autofocus attribute in forms (HTML), The autofocus attribute

AUTO_INCREMENT attribute (MySQL), The
AUTO_INCREMENT attribute-The AUTO_INCREMENT
attribute

as primary key, Primary keys, Primary Keys: The Keys to
Relational Databases

scripting, Using AUTO_INCREMENT-Using insert IDs

Axios, Using Frameworks for Asynchronous Communication

B

Babel JSX extension, Accessing the React Files

backgrounds (CSS), CSS Backgrounds-Multiple Backgrounds

about, CSS Backgrounds

auto keyword for scaling, Using the auto Value

background-clip property, The background-clip Property-
The background-clip Property

about, CSS Backgrounds

background-origin property, The background-origin
Property

about, CSS Backgrounds

background-size property, The background-size Property

units em and rem, The background-size Property

multiple backgrounds, Multiple Backgrounds-Multiple
Backgrounds

backing up, Backing Up and Restoring-Restoring from a
Backup File

all databases backed up, Backing up all databases

mysqldump, Using mysqldump

dumping data into CSV, Dumping Data in CSV
Format

redirecting data to a file, Creating a Backup File

planning your backups, Planning Your Backups

restoring from a backup file, Restoring from a Backup
File

test restoring periodically, Planning Your Backups

single table backup, Backing up a single table

backslash (\)

JavaScript

characters tab, newline, return, Escape Characters

escaping characters in strings, Escape Characters

PHP

characters tab, newline, return, Escaping characters

escaping characters in strings, Escaping characters

regular expressions escaping characters, Wildcard
Matching

backslash (\) escape character, Escape Characters

BACKUP command (MySQL), MySQL Commands

Berners-Lee, Tim, Introduction to Dynamic Web Content,
Introduction to Dynamic Web Content

BIGINT data type (MySQL), Numeric data types

binary operators, Operators, Operators

BINARY versus VARBINARY data types (MySQL), The
BINARY data type

bind variable (:) prefix (PHP), Using Placeholders

bindParam method (PHP), Using Placeholders

bitwise operators

JavaScript, Operators

PHP, Operators

BLOB data types (MySQL), The BLOB data types

book code examples on GitHub, This Book’s Examples

book supplemental material, Using Code Examples

CSS selectors, Attribute Selectors

book web page, How to Contact Us

Boole, George, Expressions

Boolean expressions, TRUE or FALSE?

Boolean function (JavaScript), Explicit Casting

Boolean operators, Logical operators

(see also logical operators)

Boolean values, TRUE or FALSE?

truthy and falsy values in JavaScript, Truthy and falsy
values

Bootstrap icon library, header.php

borders (CSS), CSS Borders-The border-radius Property

border-color property, The border-color Property

border-radius property, The border-radius Property-The
border-radius Property

box shadows (CSS), Box Shadows

box-sizing property (CSS), The box-sizing Property

break command

JavaScript

looping, Breaking Out of a Loop

switch statements, Breaking out

PHP

loops, Breaking Out of a Loop

nested loops, Breaking Out of a Loop

switch statements, The switch Statement

browsers (see web browsers)

BrowserStack, Setting Up a Development Server

C

cache, HTTP and HTML: Berners-Lee’s Basics

GET requests cached, Using GET Instead of POST

cachebusting, Using GET Instead of POST

POST requests never cached, Using GET Instead of
POST

cachebusting, Using GET Instead of POST

camelCase names, Defining a Function

caret (^)

CSS start of string (^=) operator, The ^= Operator

regular expressions

beginning of the line, Some More Complicated
Examples

character class negation, Negation

carriage return (\r) character, Escaping characters, Escape
Characters

case of characters

camelCase, Defining a Function

constants in uppercase, Constants

file handling and case sensitivity, File Handling

form filename data to lowercase, Validation

global variables in uppercase, Global variables

JavaScript

classes, instances, properties, methods, Creating an
Instance

function names case-sensitive, Defining a Function

true and false, Expressions

variable names case-sensitive, Variables

MySQL

commands case-insensitive, MySQL Commands

FULLTEXT indexes case-insensitive, MATCH…
AGAINST

table names, MySQL Commands

PHP TRUE and FALSE, TRUE or FALSE?

centering in-browser alerts or dialog windows, Other
Properties

CERN in early history of the web, Introduction to Dynamic
Web Content

CGI (Common Gateway Interface), The Benefits of PHP,
MySQL, JavaScript, CSS, and HTML

CHAR data type (MySQL), Data Types

VARCHAR versus, Data Types

character classes of regular expressions, Character Classes

character sets, Data Types

checkboxes in forms (HTML), Checkboxes-Checkboxes

checkdate function (PHP), Using checkdate

child selectors (CSS), Attribute Selectors

Chrome Developers Blog, Advanced CSS

__CLASS__ constant (PHP), Predefined Constants

class selectors (CSS), Attribute Selectors

classes

about objects, PHP Objects

inheritance, Terminology

object-oriented programming terminology,
Terminology

properties and methods, Terminology, Accessing
Objects

class composition, Inheritance

JavaScript

class constructor, Declaring a Class

declaring a class, Declaring a Class

instance created, Creating an Instance

instances of classes, Declaring a Class

legacy object-functions, The Legacy Objects
Simulated with Functions

static methods and properties, Static Methods and
Properties

this keyword, Creating an Instance

this with constructor and instance, Declaring a Class,
Creating an Instance

PHP

class constructor, Creating an Object, Constructors

creating an object, Creating an Object

declaring a class, Declaring a Class

declaring constants, Declaring Constants

inheritance, Terminology, Inheritance-Final methods

instance created, Declaring a Class

instances of classes, Terminology

static methods, Static Methods

static properties, Static Properties

clearInterval function (JavaScript), Canceling an interval

clearTimeout function (JavaScript), Canceling a timeout

click event (JavaScript), Using onerror

clients and servers, HTTP and HTML: Berners-Lee’s Basics

PHP, MySQL, JavaScript, CSS, HTML, The Benefits of
PHP, MySQL, JavaScript, CSS, and HTML

request/response process, The Request/Response
Procedure-The Request/Response Procedure

cookies, Using Cookies in PHP

working remotely, Working Remotely

logging in, Logging In

transferring files, Transferring Files

clocks

React state, React State and Life Cycle-React State and
Life Cycle

setInterval function, Using setInterval

cloning objects (PHP), Cloning Objects

Codd, E. F., Normalization

code editors, Using a Code Editor

code examples on GitHub, This Book’s Examples

color hex code shorthand (CSS), The border-color Property

color in forms (HTML), The color input type

colors and opacity (CSS), Colors and Opacity-The opacity
Property

hex code shorthand, The border-color Property

HSL colors, HSL Colors

HSLA colors, HSLA Colors

opacity property, The opacity Property

RGB colors, RGB Colors

RGBA colors, RGBA Colors

column of table, Key Database Terms

adding a new column, Adding a new column

primary key column, Primary keys

changing data type, Changing the data type of a column

joining tables, Joining Tables-Using AS

JOIN…ON, JOIN…ON

NATURAL JOIN, NATURAL JOIN

name alias via AS keyword, Using AS

removing, The AUTO_INCREMENT attribute,
Removing a column

renaming, Renaming a column

rows unique via AUTO_INCREMENT, The
AUTO_INCREMENT attribute-The
AUTO_INCREMENT attribute

primary key, Primary keys, Primary Keys: The Keys
to Relational Databases

command line MySQL

about, Accessing MySQL via the Command Line

starting up

Linux, Linux users

macOS, macOS users

remote server, MySQL on a remote server

Windows, Windows users

using, Using the Command-Line Interface

logging in as root, Windows users

logging in as user, Creating users

prompts, The semicolon

semicolon, The semicolon

\c to cancel input, Canceling a command

commands commonly used in MySQL, MySQL Commands

adding a new column, Adding a new column

primary key column, Primary keys

adding data to a table, Adding data to a table, Joining
Tables

in a script, Adding Data

case-insensitive, MySQL Commands

changing column data type, Changing the data type of a
column

creating a database, Creating a database, functions.php

creating a table, Creating a table-Creating a table

auto-incrementing column, The
AUTO_INCREMENT attribute

indexes created with table, Adding indexes when
creating tables

numeric field, Numeric data types

primary key created with table, Primary keys

scripting, Creating a Table

creating users, Creating users-Creating users,
functions.php

deleting a table, Deleting a table

in a script, Dropping a Table

logging in as root, Windows users

logging in as user, Creating users

renaming a column, Renaming a column

renaming a table, Renaming a table

comments

JavaScript, Using Comments

MySQL and canceling input, Canceling a command

PHP, Using Comments

COMMIT a transaction (MySQL), Using COMMIT

Common Gateway Interface (CGI), The Benefits of PHP,
MySQL, JavaScript, CSS, and HTML

compact array function (PHP), compact

comparison operators

JavaScript, Operators, Comparison operators

short-circuit evaluation, Logical operators

PHP, Comparison operators

concat array method (JavaScript), concat

concatenation (.) of strings (PHP), String concatenation

concatenation assignment (.=) operator (PHP), Assignment
operators, String concatenation

conditionals

JavaScript, Conditionals-Default action

else statement, The else Statement

if statement, The if Statement

switch statement, The switch Statement-Default
action

JSX inline conditional statements, Inline JSX Conditional
Statements

PHP, Conditionals-Alternative syntax

? operator, The Difference Between the echo and
print Commands, Operators, The ? (or Ternary)
Operator

else statement, The else Statement-The else
Statement

elseif statement, The elseif Statement

if statement, The if Statement-The if Statement

switch statement, The switch Statement-Alternative
syntax

console.log for JavaScript output, Using console.log

Hello World, JavaScript and HTML Text

log method of console object, The Document Object
Model

const keyword (JavaScript), Using const

creating an object, JavaScript Objects

constants

JavaScript, Using const

arrays and objects can be modified, Using const

names in uppercase letters, Constants

PHP, Constants

constants inside classes, Declaring Constants

predefined constants, Predefined Constants

superglobal variables versus, Superglobal variables

__construct function (PHP), Constructors

constructors

PHP, Creating an Object, Constructors

subclasses calling parent constructors, Subclass
constructors

continue statement

JavaScript, The continue Statement

PHP, The continue Statement

cookies in PHP, Using Cookies in PHP-Destroying a Cookie

about cookies, Using Cookies in PHP

third-party cookies, Using Cookies in PHP

third-party cookies being phased out, Using Sessions

cookie-only sessions, Forcing cookie-only sessions

deleting, Destroying a Cookie

disabled in web browser, Using Cookies in PHP, Using
Sessions

editing cookies within browser, Using Cookies in PHP

reading a cookie, Accessing a Cookie

session ID, Using Sessions

setting a cookie, Setting a Cookie

copy function (PHP), Copying Files

CORS (see cross-origin resource sharing)

count array function (PHP), count

CREATE command (MySQL), MySQL Commands

creating a database, Creating a database

social networking site, functions.php

creating a table, Creating a table-Creating a table

auto-incrementing column, The
AUTO_INCREMENT attribute

indexes created with table, Adding indexes when
creating tables

numeric field specified, Numeric data types

primary key created with table, Primary keys

creating a table in a script, Creating a Table

creating an index, Using CREATE INDEX

creating users, Creating users-Creating users

social networking site, functions.php

createServer method (Node.js http object), Getting Started
with Node.js

creating a file (PHP), Creating a File

cross-origin resource sharing (CORS), Cross-Origin Resource
Sharing (CORS)-Same-origin and cross-origin requests

origin, Origin

same-origin and cross-origin requests, Same-origin
and cross-origin requests

cross-site scripting (XSS) attack, Fetching a Result, Preventing
JavaScript Injection into HTML

article by OWASP online, Sanitizing Input

innerHTML property risks, Your First Asynchronous
Program

sanitizing input, Sanitizing Input

CSS

about using, Using CSS

Can I Use… website, Advanced CSS, Using the auto
Value

CSS instead of JavaScript, Advanced CSS

CSS3 covered in book, Advanced CSS

example of username check, Bringing It All
Together-Bringing It All Together

putting it all together (see social networking site)

backgrounds, CSS Backgrounds-Multiple Backgrounds

about, CSS Backgrounds

background-clip property, The background-clip
Property-The background-clip Property

background-origin property, The background-origin
Property

background-size property, The background-size
Property

multiple backgrounds, Multiple Backgrounds-
Multiple Backgrounds

benefits of, The Benefits of PHP, MySQL, JavaScript,
CSS, and HTML

borders, CSS Borders-The border-radius Property

border-color property, The border-color Property

border-radius property, The border-radius Property-
The border-radius Property

box shadows, Box Shadows

box-sizing property, The box-sizing Property

units em and rem, The background-size Property

color hex code shorthand, The border-color Property

colors and opacity, Colors and Opacity-The opacity
Property

HSL colors, HSL Colors

HSLA colors, HSLA Colors

opacity property, The opacity Property

RGB colors, RGB Colors

RGBA colors, RGBA Colors

development history, Advanced CSS

2023 snapshot of stable modules online, Advanced
CSS

further information online, Advanced CSS

Selectors Level 4, Advanced CSS

flexbox layout, Flexbox-Item Gaps

aligning content, Aligning Content

aligning items, Aligning Items

browser-based editor, Flexbox

flex items, Flex Items

flex wrap, Flex Wrap

flow direction, Flow Direction

item gaps, Item Gaps

justifying content, Justifying Content

order property, Order

resizing items, Resizing Items

grid layout, CSS Grid-Alignment

alignment, Alignment

browser-based editor, Grid Container

columns and rows, Grid Columns and Rows

grid container, Grid Container

grid flow, Grid Flow

grid gaps, Grid Gaps

placing grid items, Placing Grid Items

JavaScript accessing

by, byID, and style functions created, Revisiting the
getElementById Function-Including the Functions

byID and style functions in GitHub, Including the
Functions

CSS properties, Accessing CSS Properties from
JavaScript-Other Properties

getElementById function, Revisiting the
getElementById Function-Including the Functions

hiding and showing elements, Alternatives to
Adding and Removing Elements

name hyphenation to camelCase, Accessing CSS
Properties from JavaScript

multicolumn layout, Multicolumn Layout

overflow property of elements, Element Overflow

pseudoclasses, Attribute Selectors

hover pseudoclass script, Shorthand Syntax

pseudoelements, Attribute Selectors

selectors, Attribute Selectors

matching part of a string, Attribute Selectors-The *=
Operator

supplemental material online, Attribute Selectors

supplemental material online, Using Code Examples,
Using CSS

selectors, Attribute Selectors

text effects, Text Effects-The word-wrap Property

text-overflow property, The text-overflow Property

text-shadow property, The text-shadow Property

word-wrap property, The word-wrap Property

transformations, Transformations-Transformations

script with transition, Shorthand Syntax

transitions, Transitions

delay, Transition Delay

duration, Transition Duration

properties, Properties to Transition

returning to initial state, Shorthand Syntax

script with transformation, Shorthand Syntax

shorthand syntax, Shorthand Syntax

timing, Transition Timing

units em and rem, The background-size Property

web fonts, Web Fonts

Google web fonts, Google Web Fonts

Google web fonts privacy page, Google Web Fonts

Google web fonts website, Google Web Fonts

specifying for browser, Web Fonts

CSS3 covered in book, Advanced CSS

(see also CSS)

CSV data dump, Dumping Data in CSV Format

Ctrl-C (EXIT) command

MySQL, MySQL Commands

Node.js, Getting Started with Node.js

curly braces ({ })

JavaScript

associative arrays, Associative Arrays

classes, Declaring a Class

const keyword, Using const

functions, Defining a Function, Defining a Function,
Declaring a Class, Anonymous Functions

if statements, The if Statement

let keyword, Using let

objects, JavaScript Objects

PHP

classes, Declaring a Class

do…while loops, do…while Loops

for loops, for Loops

functions, Functions, Defining a Function

if statements, The if Statement

switch statements, The switch Statement

switch statements, alternative syntax, Alternative
syntax

while loops, while Loops

D

Dahl, Ryan, Node.js: An Alternative to Apache, Introduction
to Node.js

data dumped into CSV file, Dumping Data in CSV Format

data types in MySQL, Data Types

AUTO_INCREMENT attribute, The
AUTO_INCREMENT attribute-The
AUTO_INCREMENT attribute

as primary key, Primary Keys: The Keys to
Relational Databases

BINARY versus VARBINARY, The BINARY data type

BLOB types, The BLOB data types

changing column data type, Changing the data type of a
column

CHAR versus VARCHAR, Data Types

character sets, Data Types

DATE and TIME types, DATE and TIME types

numeric types, Numeric data types

signed versus unsigned numbers, Numeric data types

UNSIGNED qualifier, Numeric data types

AUTO_INCREMENT attribute

as primary key, Primary keys

TEXT types, The TEXT data types

databases

backing up, Backing Up and Restoring-Restoring from a
Backup File

all databases, Backing up all databases

mysqldump, Using mysqldump

mysqldump redirected to a file, Creating a Backup
File

restoring from a backup file, Restoring from a
Backup File

single table backup, Backing up a single table

basics, MySQL Basics

definition of database, MySQL Basics, Key
Database Terms

design, Database Design

key terms, Key Database Terms

MySQL

about MySQL, Using MySQL

creating a database, Creating a database,
functions.php

creating users, Creating users-Creating users,
functions.php

joining tables, Joining Tables-Using AS

normalization, Normalization-When Not to Use
Normalization

placeholders, Using Placeholders-Using
Placeholders

slow database responsiveness, Creating a
FULLTEXT index

SQL as Structured Query Language, MySQL Basics

privacy and, Databases and Privacy

querying, Querying a MySQL Database-GROUP BY

AS keyword, Using AS

DELETE a row, DELETE

GROUP BY keywords, GROUP BY

LIKE keyword, WHERE

LIMIT keyword, LIMIT

logical operators, Using Logical Operators

MATCH…AGAINST, MATCH…AGAINST-
MATCH…AGAINST in Boolean mode

MATCH…AGAINST in Boolean mode, MATCH…
AGAINST in Boolean mode

ORDER BY keywords, ORDER BY

phpMyAdmin tool for MySQL, Accessing MySQL
via phpMyAdmin

scripting, Retrieving Data, Performing Additional
Queries

SELECT, SELECT

SELECT COUNT, SELECT COUNT

SELECT DISTINCT, SELECT DISTINCT

UPDATE…SET, UPDATE…SET

WHERE keyword, WHERE

relationships, Relationships-Many-to-Many

many-to-many, Many-to-Many

one-to-many, One-to-Many

one-to-one, One-to-One

privacy and, Databases and Privacy

transactions, Transactions-Using EXPLAIN

about, Transactions

BEGIN, Using START TRANSACTION

COMMIT, Using COMMIT

START TRANSACTION, Using START
TRANSACTION

transaction storage engines, Transaction Storage
Engines

date and time functions (MySQL) documentation online,
MySQL Functions

date and time functions (PHP), Date and Time Functions-
Using checkdate

2038 as end of time, Date and Time Functions

date constants, Date Constants

validity check via checkdate, Using checkdate

date and time pickers in forms (HTML), Date and time pickers

DATE data type (MySQL), DATE and TIME types

date function (PHP), Date and Time Functions

date constants, Date Constants

DATETIME data type (MySQL), DATE and TIME types

DATE_ATOM constant (PHP), Date Constants

DATE_COOKIE constant (PHP), Date Constants

DATE_RSS constant (PHP), Date Constants

DATE_W3C constant (PHP), Date Constants

debugging

compact array function for, compact

file locking, Locking Files for Multiple Accesses

JavaScript, Debugging JavaScript Errors

onerror event, Using onerror

short-circuit evaluation, Logical operators

var for redeclaring variables, Using let

MySQL

DESCRIBE command, Creating a table

EXPLAIN for query taking too long, Using
EXPLAIN

slow database responsiveness, Creating a
FULLTEXT index

PHP

-> not requiring $, Writing Methods

encapsulation of classes, Terminology

global variables, Global variables, Returning Global
Variables

if statements without curly braces, The if Statement

inheritance, Inheritance

magic constants for, Predefined Constants

nested multiline comments, Using Comments

object destruction, Destructors

object properties implicitly declared, Declaring
Properties

or operator second operand evaluation, Logical
operators

semicolons, Semicolons

variable scope, Local variables

decrement (—) operator

JavaScript, Arithmetic Operators, Incrementing,
Decrementing, and Shorthand Assignment, Operators

PHP, Arithmetic operators, Variable incrementing and
decrementing

define function (PHP), Constants

DELETE row command (MySQL), MySQL Commands,
DELETE

deleting a cookie, Destroying a Cookie

deleting a database record (PHP), Running the Program

in a script, Deleting Data

deleting a file (PHP), Deleting a File

deleting a table (MySQL), Deleting a table

in a script, Dropping a Table

derived class in inheritance, Terminology

descendent selectors (CSS), Attribute Selectors

DESCRIBE command (MySQL), MySQL Commands

checking indexes added, Creating an Index

checking table alteration, Adding a new column

checking table creation, Creating a table, The
AUTO_INCREMENT attribute, Deleting a table

script use of, Describing a Table

designing a database, Database Design

__destruct function (PHP), Destructors

destructors (PHP), Destructors

development server setup

about development servers, Setting Up a Development
Server

code editors, Using a Code Editor

Linux, Installing a LAMP on Linux

document root check, Installing a LAMP on Linux

macOS installation of AMPPS, Installing AMPPS on
macOS

document root, Installing AMPPS on macOS

document root Hello World, Installing AMPPS on
macOS

PHP version, Installing AMPPS on macOS

serving pages from document root versus filesystem,
Installing AMPPS on macOS

Node.js alternative to Apache, Building a Functioning
Web Server-Building a Functioning Web Server

port number, String variables

WAMP, MAMP, or LAMP, What Is a WAMP, MAMP, or
LAMP?

Windows installation of AMPPS, Installing AMPPS on
Windows-Installing AMPPS on Windows

alternative WAMPs, Alternative WAMPs

AMPPS documentation, Installing AMPPS on
Windows, Alternative WAMPs

configuration, Testing the Installation

document root, Accessing the Document Root
(Windows)

document root Hello World, Accessing the
Document Root (Windows)

document root viewed, Testing the Installation

Microsoft Visual C++ Redistributable, Installing
AMPPS on Windows

PHP version, Installing AMPPS on Windows

serving pages from document root versus filesystem,
Accessing the Document Root (Windows)

testing the installation, Testing the Installation-
Testing the Installation

working remotely, Working Remotely

logging in, Logging In

SSH for MySQL, Working Remotely

transferring files, Transferring Files

dictionaries (see associative arrays)

die function (PHP), Creating a File

file closed as part of termination, Creating a File, Locking
Files for Multiple Accesses

file unlocked as part of termination, Locking Files for
Multiple Accesses

message instead, Copying Files

digit (\d) in regular expressions, Indicating a Range

__DIR__ constant (PHP), Predefined Constants

directories (PHP)

rename function, Moving a File

system call to view contents, System Calls

directory traversal attack, Building a Functioning Web Server

display property (CSS)

flex value, Flexbox-Item Gaps

aligning content, Aligning Content

aligning items, Aligning Items

browser-based editor, Flexbox

flex items, Flex Items

flex wrap, Flex Wrap

flow direction, Flow Direction

item gaps, Item Gaps

justifying content, Justifying Content

order property, Order

resizing items, Resizing Items

grid value, CSS Grid-Alignment

alignment, Alignment

browser-based editor, Grid Container

columns and rows, Grid Columns and Rows

grid container, Grid Container

grid flow, Grid Flow

grid gaps, Grid Gaps

justifying content, Alignment

placing grid items, Placing Grid Items

division (/) operator

JavaScript, Arithmetic Operators

PHP, Arithmetic operators

division and assignment (/=) operator

JavaScript, Assignment Operators

PHP, Assignment operators

DNS (Domain Name System), The Request/Response
Procedure

do…while loops

JavaScript, do…while Loops

PHP, do…while Loops

Document Object Model (DOM)

about, The Document Object Model

hierarchy of objects, The Document Object Model

JavaScript design, The Document Object Model-The
Document Object Model

adding new elements, Adding New Elements

document object URL specified, Using the DOM

hierarchy of parent and child objects, The Document
Object Model

history of JavaScript, Exploring JavaScript

length property, Using the DOM

links object, Using the DOM

removing elements, Removing Elements

using the DOM, Using the DOM

jQuery simplifying traversal and manipulation,
Introduction to React

React updates via virtual DOM, What Is the Point of
React Anyway?

document root

about, Accessing the Document Root (Windows)

Linux, Installing AMPPS on macOS

macOS, Installing AMPPS on macOS

Hello World file, Installing AMPPS on macOS

serving pages from document root versus filesystem,
Accessing the Document Root (Windows), Installing
AMPPS on macOS

Windows

command for viewing on local server, Testing the
Installation

Hello World file, Accessing the Document Root
(Windows)

document.write function (JavaScript), Using JavaScript-Using
JavaScript, Using document.write

dollar ($) symbol

JavaScript variable and function names, Variables

PHP variables, The $ symbol

porting into JavaScript, Variables

regular expressions, Some More Complicated Examples

DOM (see Document Object Model)

Domain Name System (DNS), The Request/Response
Procedure

DOMDocument class loadHTML method (PHP), Wildcard
Matching

DOMPurify library, Sanitizing Input

dot (.) in regular expressions, Wildcard Matching

HTML tag match expressions, Wildcard Matching

matching the dot character, Wildcard Matching

DOUBLE or REAL data type (MySQL), Numeric data types

double quote mark (see quotation mark, double (“))

DROP command (MySQL), MySQL Commands

deleting a table, Deleting a table

in a script, Dropping a Table

irreversible, Removing a column

removing a column, The AUTO_INCREMENT attribute,
Removing a column

drop-down list (HTML), <select>

dumping data into CSV, Dumping Data in CSV Format

dynamic web design

Apache web server, The Apache Web Server

(see also Apache web server; Node.js)

basics of HTTP and HTML, HTTP and HTML: Berners-
Lee’s Basics-The Request/Response Procedure

HTML5, And Then There’s HTML5

HTTP GET and POST requests, Uploading Files

history, Introduction to Dynamic Web Content

MariaDB, MariaDB: The MySQL Clone

multicolumn layout, Multicolumn Layout

open source technologies, About Open Source

PHP, MySQL, JavaScript, CSS, HTML, The Benefits of
PHP, MySQL, JavaScript, CSS, and HTML

asynchronous communication example, Bringing It
All Together-Bringing It All Together

CSS instead of JavaScript, Advanced CSS

WAMP, MAMP, or LAMP, What Is a WAMP,
MAMP, or LAMP?

putting it all together (see social networking site)

request/response process, The Request/Response
Procedure-The Request/Response Procedure

cookies, Using Cookies in PHP

server setup (see development server setup)

supplemental material online, Using Code Examples

using CSS, Using CSS

using JavaScript, Using JavaScript

using MySQL, Using MySQL

using PHP, Using PHP, The Apache Web Server

modularization of PHP code, PHP Modularization

E

EasyPHP, Alternative WAMPs

echo command versus print (PHP), The Difference Between
the echo and print Commands

PHP output via echo, Outputting the Results

ECMAScript modules, Getting Started with Node.js

editors for coding, Using a Code Editor

element overflow (CSS), Element Overflow

else statement

JavaScript, The else Statement

PHP, The else Statement-The else Statement

elseif statement (PHP), The elseif Statement

email address validation, Validating the email

encapsulation of objects, Terminology

encoding as multipart/form-data, Uploading Files

end array function (PHP), end

ENGINE command (MySQL)

creating a table, Creating a table, Transaction Storage
Engines

InnoDB storage engine, Creating a table, Transaction
Storage Engines

equality (==) operator

JavaScript, Comparison Operators, Equality operators

not confusing with = operator, Comparison operators,
Equality operators

PHP, Comparison operators, Equality operators-Equality
operators

errors

JavaScript

displayed in browser console, Debugging JavaScript
Errors

error handling in user input validation, The
validate.html Document (Part 1), The validate.html
Document (Part 1)

onerror for error handling, Using onerror

trapping with try…catch, Using try…catch

Uncaught TypeError, Using const

PHP

error messages trapped, Connecting to a MySQL
Database, Deleting a Record

Parse error, Semicolons, Multiline Strings

TypeError, Variable Typing

Undefined variable, Local variables

variable scope, Local variables

trapping with try…catch

JavaScript, Using try…catch

PHP, Connecting to a MySQL Database, Deleting a
Record

escape characters (\)

JavaScript

characters tab, newline, return, Escape Characters

escaping characters in strings, Escape Characters

PHP

characters tab, newline, return, Escaping characters

escaping characters in strings, Escaping characters

escapeshellcmd function (PHP), System Calls

events

JavaScript

about, Using onerror

click, Using onerror

mouseover, Inline JavaScript

objects attached to, Attaching Events to Objects in a
Script

onerror for error handling, Using onerror

table of events and their triggers, Attaching to Other
Events

time-based, Time-based Events-Using Time-Based
Events for Animation

validation of user input, The validate.html
Document (Part 1), The validate.html Document
(Part 1)

React, Events in React-Events in React

names in camelCase, Events in React

every array method (JavaScript), some and every

exceptions (see errors)

exclusive or (xor) logical operator (PHP), Logical operators,
Operator precedence, Logical operators-Logical operators

exec function (PHP), System Calls-System Calls

cautions, System Calls

escapeshellcmd function, System Calls

placeholders, Using Placeholders

colon prefix for values optional, Using Placeholders

EXECUTE command (MySQL), Using Placeholders

execute function (PDO), Using Placeholders

HTTP authentication, An Example Program-An Example
Program

starting a session, Starting a Session-Starting a Session

execution operators (PHP), Operators

caution, Operators

EXIT (Ctrl-C) command (MySQL), MySQL Commands

EXPLAIN a transaction (MySQL), Using EXPLAIN

explicit casting of variables

JavaScript, Explicit Casting

PHP, Implicit and Explicit Casting

explode array function (PHP), explode

exponentiation (**) operator (PHP), Arithmetic operators

expressions

definition, Expressions

JavaScript, Expressions-Literals and Variables

literals and variables, Literals and Variables

multiple properties and methods in one expression,
Returning a Value

PHP, Expressions-Literals and Variables

Boolean expressions, TRUE or FALSE?

literals and variables, Literals and Variables

statements from, Literals and Variables

extract array function (PHP), compact

F

F12 key for browser console, Debugging JavaScript Errors

FALSE with value of ”” (PHP), TRUE or FALSE?

NULL different, TRUE or FALSE?

false with value of “false” (JavaScript), Expressions

falsy and truthy values (JavaScript), Truthy and falsy values

fclose function (PHP), Creating a File, Reading from Files

Fetch API (JavaScript)

about, The Fetch API

asynchronous program GET method, Using GET Instead
of POST-Using GET Instead of POST

asynchronous program POST method, Your First
Asynchronous Program-The Server Half of the
Asynchronous Process

fetch function returning a Promise, Your First
Asynchronous Program

JSON requests, Sending JSON Requests-Sending JSON
Requests

link to standard, The Fetch API

fetch method (PDO), Fetching a Result-Fetching a Result

data style options, Fetching a Row While Specifying the
Style

documentation online, Fetching a Row While
Specifying the Style

scripting, Retrieving Data

HTTP authentication example, An Example
Program-An Example Program

fgets function (PHP)

reading from a file, Reading from Files

updating a file, Updating Files

fields in records, Key Database Terms

UPDATE…SET to update, UPDATE…SET

__FILE__ constant (PHP), Predefined Constants

file handle for opening a file (PHP), Creating a File

file handling (PHP)

about case sensitivity, File Handling

always open, write/read, close, Creating a File

copying a file, Copying Files

creating a file, Creating a File

deleting a file, Deleting a File

die function replaced with message, Copying Files

error trapping break example, Breaking Out of a Loop

file exists check, Checking Whether a File Exists

file handle, Creating a File

file pointer, Updating Files

locking files for multiple accesses, Locking Files for
Multiple Accesses

as advisory lock, Locking Files for Multiple
Accesses

not supported on all systems, Locking Files for
Multiple Accesses

moving a file, Moving a File

opening a file, Creating a File

modes, Creating a File

reading from a file, Reading from Files

HTML fetch and display, Reading an Entire File

reading an entire file, Reading an Entire File

updating a file, Updating Files

uploading a file, Uploading Files-Validation

$_FILES, Using $_FILES

internet media content types, Using $_FILES

file pointer (PHP), Updating Files

File Transfer Protocol SSL (FTPS), Transferring Files

not FTP, Transferring Files

files to include directive (PHP), Including and Requiring Files

files required to be included, Using require and
require_once

FileZilla for SFTP, Transferring Files

FileZilla Wiki, Transferring Files

open source, Transferring Files

file_exists function (PHP), Checking Whether a File Exists

file_get_contents function (PHP), Reading an Entire File

HTML fetch and display, Reading an Entire File

asynchronous program, The Server Half of the
Asynchronous Process

filter array method (JavaScript), filter

final methods in inheritance, Final methods

flexbox layout (CSS), Flexbox-Item Gaps

aligning content, Aligning Content

aligning items, Aligning Items

browser-based editor, Flexbox

flex items, Flex Items

flex wrap, Flex Wrap

flow direction, Flow Direction

item gaps, Item Gaps

justifying content, Justifying Content

order property, Order

resizing items, Resizing Items

FLOAT data type (MySQL), Numeric data types

flock function (PHP), Locking Files for Multiple Accesses

die function unlocks a lock, Locking Files for Multiple
Accesses

not supported on all systems, Locking Files for Multiple
Accesses

fonts loaded from web, Web Fonts

Google web fonts, Google Web Fonts

Google Fonts Website, Google Web Fonts

privacy information online, Google Web Fonts

specifying for browser, Web Fonts

fontSize property (JavaScript), Accessing CSS Properties from
JavaScript

fopen function (PHP), Creating a File

creating a text file, Creating a File

locking a file for multiple accesses, Locking Files for
Multiple Accesses

modes, Creating a File

reading from a file, Reading from Files

updating a file, Updating Files

for loops

JavaScript, for Loops

for…in loops, Associative Arrays

PHP, for Loops-for Loops

arrays, Numerically Indexed Arrays

for…of loop (JavaScript), for Loops

forEach array method (JavaScript), forEach

foreach…as loops (PHP), The foreach…as Loop-The
foreach…as Loop, reset

foreign keys (MySQL), First Normal Form

form attribute in forms (HTML), The form attribute

form feed (\f) character (JavaScript), Escape Characters

formatted output to string via sprintf (PHP), Using sprintf

formatted output via printf (PHP), Using printf

forms (HTML)

about, Form Handling

building, Building Forms

default values, Default Values

example of PHP integrating with forms, An Example
Program-An Example Program

filename data to lowercase, Validation

GET method of submission, The $_POST Array

sanitizing via htmlentities function, Superglobals
and security, Preventing JavaScript Injection into
HTML, Sanitizing Input

htmlspecialchars function in PHP, Fetching a Result,
Displaying the Form, HTTP Authentication

image and text posted, profile.php

image uploader, Uploading Files

POST method of submission, Uploading Files

input types, Input Types-Date and time pickers

<select>, <select>-<select>

autocomplete attribute, The autocomplete attribute

autofocus attribute, The autofocus attribute

checkboxes, Checkboxes-Checkboxes

color, The color input type

date and time pickers, Date and time pickers

form attribute, The form attribute

hidden fields, Hidden fields

labels, Labels

list attribute, The list attribute

min and max attributes, The min and max attributes

number and range, The number and range input
types

override attributes, Override attributes

placeholder attribute, The placeholder attribute

radio buttons, Radio buttons

required attribute, The required attribute

step attribute, The step attribute

submit button, The submit button

text areas, Text areas

text boxes, Text boxes

width and height attributes, The width and height
attributes

PHP querying MySQL database, A Practical Example-A
Practical Example

POST method of submission, The $_POST Array

$_POST array, The $_POST Array

image uploader, Uploading Files

PHP querying MySQL database, A Practical
Example

sanitizing via htmlentities function, Superglobals
and security, Preventing JavaScript Injection into
HTML, Sanitizing Input

retrieving submitted data, Retrieving Submitted Data-
Sanitizing Input

default values, Default Values

DOMPurify library, Sanitizing Input

hacking prevention via placeholders, Using
Placeholders-Using Placeholders

sanitizing input, Sanitizing Input

sanitizing via htmlentities function, Superglobals
and security, Preventing JavaScript Injection into
HTML, Sanitizing Input

social networking site, signup.php, login.php

photo and text, profile.php

validation, Validation-Validation

user input using JavaScript, Validating User Input
with JavaScript-Using a separate JavaScript file

user input via PHP, Redisplaying a Form After PHP
Validation-Redisplaying a Form After PHP
Validation

forms (React), Handling Forms-Using select

controlled components, Handling Forms

select, Using select

text area, Using textarea

text input, Using Text Input-Using Text Input

forward slash (/)

/* and */ for multiline comments

JavaScript, Using Comments

PHP, Using Comments

// for single line comments

JavaScript, Using Comments

PHP, Using Comments

self-closing elements in HTML, And Then There’s
HTML5

frameworks, Introduction to React

asynchronous communication, Using Frameworks for
Asynchronous Communication

React as, What Is the Point of React Anyway?

fread function (PHP), Reading from Files

fseek function (PHP)

reseek at each file access, Locking Files for Multiple
Accesses

updating a file, Updating Files

FTPS (File Transfer Protocol SSL), Transferring Files

not FTP, Transferring Files

FULLTEXT indexes (MySQL), Creating a FULLTEXT index

case-insensitive, MATCH…AGAINST

facts to know, Creating a FULLTEXT index

MATCH…AGAINST command, MATCH…AGAINST-
MATCH…AGAINST in Boolean mode

Boolean mode, MATCH…AGAINST in Boolean
mode

stopwords, Creating a FULLTEXT index

__FUNCTION__ constant (PHP), Predefined Constants

functions

definition, PHP Functions and Objects

JavaScript, Functions

anonymous functions, Anonymous Functions

arguments array, The arguments array

arrays passed by reference, Local Variables

arrow functions, Arrow Functions

defining a function, Functions, Defining a Function-
The arguments array

legacy object-functions, The Legacy Objects
Simulated with Functions

pure versus impure code, Pure and Impure Code: A
Golden Rule

rest parameter syntax, The rest parameter

returning a value, Returning a Value

returning an array, Returning an Array

setTimeout calling, Using setTimeout

local variables

JavaScript, Local Variables

PHP, Local variables-Local variables, Recap of
Variable Scope

MySQL documentation online, MySQL Functions

PHP, Functions, PHP Functions-PHP Functions

defining a function, Defining a Function

expression evaluation, Returning a Value

function_exists function, PHP Version Compatibility

returning a value, Returning a Value-Returning a
Value

returning an array, Returning an Array

returning global variables, Returning Global
Variables

static variables in PHP, Static variables, Recap of
Variable Scope

function_exists function (PHP), PHP Version Compatibility

fwrite function (PHP)

creating a file, Creating a File

locking a file for multiple accesses, Locking Files for
Multiple Accesses

updating a file, Updating Files

G

GD (Graphics Draw) library (PHP), The Apache Web Server

GET method (HTTP)

asynchronous program, Using GET Instead of POST-
Using GET Instead of POST

browsers may cache requests, Using GET Instead of
POST

first asynchronous program

JSON requests, Sending JSON Requests-Sending
JSON Requests

forms, The $_POST Array

sanitizing via htmlentities function, Superglobals
and security, Preventing JavaScript Injection into
HTML, Sanitizing Input

image uploader, Uploading Files

getCode function (PHP), Connecting to a MySQL Database

getElementById function (JavaScript)

called via $, Another Use for the $ Symbol

CSS from JavaScript, Revisiting the getElementById
Function-Including the Functions

byID and style functions in GitHub, Including the
Functions

getimagesize function (PHP), Adding a Profile Image

getMessage function (PHP), Connecting to a MySQL
Database

GitHub repo for this book

book supplemental material, Using Code Examples

CSS selectors, Attribute Selectors

book’s examples, This Book’s Examples

byID and style functions, Including the Functions

database login.php, Creating a Login File

input validation via JavaScript, The validate.html
Document (Part 1)

input validation via PHP, Redisplaying a Form After
PHP Validation

React, React Native

social networking site, Online Repository

users table and accounts in PHP, An Example
Program

DOMPurify library, Sanitizing Input

Introduction to CSS, Using CSS

Introduction to HTML5, Using Code Examples, And
Then There’s HTML5

React development files, Accessing the React Files

global variables

JavaScript, Global Variables

names in uppercase letters, Global variables

PHP, Global variables, Recap of Variable Scope

functions returning, Returning Global Variables

globally unique identifiers (GUIDs), Primary Keys: The Keys
to Relational Databases

Google Maps as asynchronous communication, Using
Asynchronous Communication

Google Privacy Sandbox, Using Sessions

Google V8 JavaScript engine, Node.js: An Alternative to
Apache

Google web fonts, Google Web Fonts

Google Fonts Website, Google Web Fonts

privacy information online, Google Web Fonts

script that loads a font, Google Web Fonts

GRANT command (MySQL), MySQL Commands

creating users, Creating users-Creating users

only privileges you already have, Creating users

social networking site, functions.php

documentation online, Creating users

graphical user interface access to MySQL, Accessing MySQL
via the Command Line

Graphics Draw (GD) library (PHP), The Apache Web Server

greater than (>) operator

JavaScript, Comparison Operators, Comparison operators

PHP, Comparison operators, Comparison operators

greater than or equal to (>=) operator

JavaScript, Comparison Operators, Comparison operators

PHP, Comparison operators, Comparison operators

grid layout (CSS), CSS Grid-Alignment

alignment, Alignment

browser-based editor, Grid Container

columns and rows, Grid Columns and Rows

grid container, Grid Container

grid flow, Grid Flow

grid gaps, Grid Gaps

placing grid items, Placing Grid Items

GUIDs (globally unique identifiers), Primary Keys: The Keys
to Relational Databases

H

hacking prevention, Preventing Hacking Attempts-Preventing
JavaScript Injection into HTML

(see also security)

about the risks, Preventing Hacking Attempts

article by OWASP online, Sanitizing Input

cross-site scripting (XSS) attack, Fetching a Result,
Preventing JavaScript Injection into HTML

article by OWASP online, Sanitizing Input

sanitizing input, Sanitizing Input

JavaScript injection into HTML, Preventing JavaScript
Injection into HTML

path traversal attack, Building a Functioning Web Server

PDO quote method, Steps You Can Take-Steps You Can
Take

placeholders in MySQL, Using Placeholders-Using
Placeholders

SQL injection attack, Preventing Hacking Attempts

steps to take, Steps You Can Take-Steps You Can Take

height attribute in forms (HTML), The width and height
attributes

Hello World

document root file

macOS, Installing AMPPS on macOS

Windows, Accessing the Document Root (Windows)

JavaScript, JavaScript and HTML Text

Node.js, Getting Started with Node.js

PHP, Incorporating PHP Within HTML

HELP (\h, \?) command (MySQL), MySQL Commands

heredoc (<<<) operator (PHP), Multiline Strings

example of form code, A Practical Example, Displaying
the Form

hex code shorthand for colors (CSS), The border-color
Property

hexadecimal (\xXX) escape character, Escape Characters

hidden fields in forms (HTML), Hidden fields

not secure, Hidden fields

history object in web browsers (JavaScript), Using the DOM,
Other Properties

go, back, and forward methods, Using the DOM

pushState method, Using the DOM

replaceState method, Using the DOM

hover pseudoclass script (CSS), Shorthand Syntax

HSL colors (CSS), HSL Colors

HTML (Hypertext Markup Language)

about HTML5, And Then There’s HTML5

(see also HTML5)

basics of, HTTP and HTML: Berners-Lee’s Basics-The
Request/Response Procedure

benefits of, The Benefits of PHP, MySQL, JavaScript,
CSS, and HTML

client/server request/response process, The
Request/Response Procedure-The Request/Response
Procedure

cookies, Using Cookies in PHP

closing / character, And Then There’s HTML5

CSS crucial to, Using CSS

(see also CSS)

Document Object Model

adding new elements via JavaScript, Adding New
Elements

hierarchy of objects, The Document Object Model

jQuery simplifying traversal and manipulation,
Introduction to React

removing elements via JavaScript, Removing
Elements

events, Using onerror

(see also events)

file_get_contents fetch and display, Reading an Entire
File

forms

about, Form Handling

building, Building Forms

default values, Default Values

DOMPurify library, Sanitizing Input

example of PHP integrating with forms, An
Example Program-An Example Program

example of username check, Bringing It All
Together-Bringing It All Together

GET method of submission, The $_POST Array

hacking prevention via placeholders, Using
Placeholders-Using Placeholders

htmlspecialchars function in PHP, Fetching a Result,
Displaying the Form, HTTP Authentication

image and text posted, profile.php

image uploader, Uploading Files

input types, Input Types-Date and time pickers

PHP querying MySQL database, A Practical
Example-A Practical Example

POST method of submission, Uploading Files, The
$_POST Array

retrieving submitted data, Retrieving Submitted
Data-Sanitizing Input

sanitizing input, Sanitizing Input

sanitizing input via htmlentities function,
Superglobals and security, Preventing JavaScript
Injection into HTML, Sanitizing Input

social networking site, signup.php, login.php

social networking site photo and text, profile.php

validation, Validation-Validation

validation of input using JavaScript, Validating User
Input with JavaScript-Using a separate JavaScript
file

validation of input via PHP, Redisplaying a Form
After PHP Validation-Redisplaying a Form After
PHP Validation

history, Introduction to Dynamic Web Content

JavaScript added to web page, JavaScript and HTML
Text-Debugging JavaScript Errors

<script> and </script> tags, JavaScript and HTML
Text, Expressions

inline JavaScript, Inline JavaScript

pulling JavaScript code from files, Including
JavaScript Files

scripts within document head, Using Scripts Within
a Document Head

PHP incorporated into, Incorporating PHP Within
HTML-This Book’s Examples

React added to web page, Accessing the React Files

regular expressions not used for parsing, Wildcard
Matching

online post explaining, Wildcard Matching

what to use for parsing, Wildcard Matching

HTML Living Standard, And Then There’s HTML5

HTML5

about, And Then There’s HTML5

closing / character, And Then There’s HTML5

supplemental material online, Using Code Examples,
And Then There’s HTML5

htmlentities function (PHP), Superglobals and security,
Preventing JavaScript Injection into HTML, Sanitizing Input

htmlspecialchars function (PHP), System Calls

directory listing output, System Calls

HTTP authentication output, HTTP Authentication, An
Example Program-An Example Program

PHP fetching data from MySQL, Fetching a Result,
Displaying the Form

HTTP (Hypertext Transfer Protocol)

authentication, HTTP Authentication-An Example
Program

example program, An Example Program-An
Example Program

hash storage documentation online, Using
password_hash

htmlspecialchars function, HTTP Authentication

size of storage for hashes, Using password_hash

storing usernames and passwords, Storing
Usernames and Passwords-Using password_verify

validating username and password, HTTP
Authentication, login.php

verifying password against hash, Using
password_verify, login.php

basics of, HTTP and HTML: Berners-Lee’s Basics-The
Request/Response Procedure

client/server request/response process, The
Request/Response Procedure-The Request/Response
Procedure

cookies, Using Cookies in PHP

GET and POST requests, Uploading Files

history, Introduction to Dynamic Web Content

HTTPS instead, Session Security

localhost hostname to view document root

about document root, Accessing the Document Root
(Windows)

Linux, Installing a LAMP on Linux

macOS, Installing AMPPS on macOS

phpMyAdmin tool for MySQL, Accessing MySQL
via phpMyAdmin

Windows, Testing the Installation

Node.js http module, Getting Started with Node.js

HTTPS instead of HTTP, Session Security

hyphen (-) for range in regular expressions, Indicating a Range

I

ID (#id) selectors (CSS), Attribute Selectors

identity operator (see strict equality (===) operator)

if statement

JavaScript, The if Statement

PHP, The if Statement-The if Statement

image uploader, Uploading Files-Validation

form in HTML, Uploading Files

POST method of submission, Uploading Files

validation, Validation-Validation

image/pjpeg content type, Validation

imageconvolution function (PHP), Processing the Image

imagecopyresampled function (PHP), Processing the Image

imagecreatetruecolor function (PHP), Processing the Image

implicit casting of PHP variables, Implicit and Explicit
Casting

include directive (PHP), Including and Requiring Files

includes array method (JavaScript), includes

include_once directive (PHP), Using include_once

increment (++) operator

JavaScript, Arithmetic Operators, Incrementing,
Decrementing, and Shorthand Assignment, Operators

PHP, Arithmetic operators, Variable incrementing and
decrementing

indexes (MySQL), Indexes-Using Logical Operators

about, Indexes, First Normal Form

slow database responsiveness, Creating a
FULLTEXT index

creating an index

ALTER TABLE, Creating an Index

CREATE INDEX, Using CREATE INDEX

creating a FULLTEXT index, Creating a
FULLTEXT index

creating when creating table, Adding indexes when
creating tables

foreign keys, First Normal Form

primary keys, Primary keys-Primary keys, Primary Keys:
The Keys to Relational Databases

normalization, Normalization-When Not to Use
Normalization

indexOf array method (JavaScript), indexOf

inequality (!=) operator

JavaScript, Comparison Operators, Equality operators

PHP, Comparison operators, Equality operators

inheritance from a class, Terminology

caution about, Inheritance

PHP, Inheritance-Final methods

final methods, Final methods

parent operator, The parent keyword

ini_get function (PHP), Setting a Timeout

ini_set function (PHP), Setting a Timeout

cookie-only sessions, Forcing cookie-only sessions

session fixation, Preventing session fixation

shared server, Using a shared server

innerHTML property (JavaScript), Alternatives to Adding and
Removing Elements

example of use, Your First Asynchronous Program

risks of, Your First Asynchronous Program

innerText property (JavaScript), Using setInterval

InnoDB storage engine, Creating a table

searching for “and”, MATCH…AGAINST

tables can use FULLTEXT indexes, Creating a
FULLTEXT index

transaction storage engine, Transaction Storage Engines

specifying InnoDB, Transaction Storage Engines

input types in HTML forms, Input Types-Date and time
pickers

input validation via JavaScript, Validating User Input with
JavaScript-Using a separate JavaScript file

INSERT command (MySQL), MySQL Commands

adding data to a table, Adding data to a table

in a script, Adding Data, Using
AUTO_INCREMENT

inserting multiple rows of data, Joining Tables

in a script, Adding Data

instances of classes, Terminology, Declaring a Class

JavaScript creating an instance, Creating an Instance

PHP

cloning objects, Cloning Objects

creating an object, Creating an Object

INT or INTEGER data type (MySQL), Numeric data types

interface of an object, Terminology

internet

DNS, The Request/Response Procedure

history, Introduction to Dynamic Web Content

request/response process, The Request/Response
Procedure-The Request/Response Procedure

cookies, Using Cookies in PHP

internet media content types, Using $_FILES

image/pjpeg, Validation

intval function (PHP), Implicit and Explicit Casting

iOS applications via React Native, React Native

IP address

DNS, The Request/Response Procedure

request/response process, The Request/Response
Procedure-The Request/Response Procedure

session security, Preventing session hijacking

isset function (PHP), Accessing a Cookie

HTTP authentication, HTTP Authentication, HTTP
Authentication, An Example Program-An Example
Program

HTTP authentication before session, Starting a Session

variable scope, Local Variables

is_array function (PHP), is_array

J

JavaScript

about JavaScript, Exploring JavaScript

history, Exploring JavaScript

about using, Using JavaScript

CSS instead of JavaScript, Advanced CSS

example of username check, Bringing It All
Together-Bringing It All Together

putting it all together (see social networking site)

adding to web page, JavaScript and HTML Text-
Debugging JavaScript Errors

<noscript> and </noscript> tags, JavaScript and
HTML Text

<script src=, Including JavaScript Files, Including
the Functions

<script> and </script> tags, JavaScript and HTML
Text, Expressions

inline JavaScript, Inline JavaScript

pulling JavaScript code from files, Including
JavaScript Files

scripts within document head, Using Scripts Within
a Document Head

Ajax, Using JavaScript, Using Asynchronous
Communication

(see also Ajax (Asynchronous JavaScript and
XML))

arrays, Arrays-sort

associative arrays, Associative Arrays

creating a new array, Arrays, Assignment using the
array keyword

element values assigned, Assigning element values

methods, Using Array Methods-sort

multidimensional arrays, Multidimensional Arrays

passed to functions by reference, Local Variables

spread syntax, concat

asynchronous communication, The Benefits of PHP,
MySQL, JavaScript, CSS, and HTML

benefits of, The Benefits of PHP, MySQL, JavaScript,
CSS, and HTML

conditionals, Conditionals-Default action

else statement, The else Statement

if statement, The if Statement

switch statement, The switch Statement-Default
action

constants, Using const

arrays and objects can be modified, Using const

CSS accessed

by, byID, and style functions created, Revisiting the
getElementById Function-Including the Functions

byID and style functions in GitHub, Including the
Functions

CSS properties, Accessing CSS Properties from
JavaScript-Other Properties

getElementById function, Revisiting the
getElementById Function-Including the Functions

hiding and showing elements, Alternatives to
Adding and Removing Elements

name hyphenation to camelCase, Accessing CSS
Properties from JavaScript

debugging, Debugging JavaScript Errors

Document Object Model basis, The Document Object
Model-The Document Object Model

adding new elements, Adding New Elements

document object URL specified, Using the DOM

hierarchy of objects, The Document Object Model

length property, Using the DOM

links object, Using the DOM

objects, properties, methods, The Document Object
Model

removing elements, Removing Elements

using the DOM, Using the DOM

error handling

onerror, Using onerror

trapping with try…catch, Using try…catch

user input validation, The validate.html Document
(Part 1), The validate.html Document (Part 1)

events

about, Using onerror

click, Using onerror

mouseover, Inline JavaScript

objects attached to, Attaching Events to Objects in a
Script

onerror, Using onerror

table of events and their triggers, Attaching to Other
Events

time-based, Time-based Events-Using Time-Based
Events for Animation

expressions, Expressions-Literals and Variables

literals and variables, Literals and Variables

functions, Functions

anonymous functions, Anonymous Functions

arguments array, The arguments array

arrays passed by reference, Local Variables

arrow functions, Arrow Functions

defining a function, Functions, Defining a Function-
The arguments array

multiple properties and methods in one expression,
Returning a Value

pure versus impure code, Pure and Impure Code: A
Golden Rule

rest parameter syntax, The rest parameter

returning a value, Returning a Value

returning an array, Returning an Array

setTimeout calling, Using setTimeout

getElementById function

byID and style functions in GitHub, Including the
Functions

called via $, Another Use for the $ Symbol

CSS from JavaScript, Revisiting the
getElementById Function-Including the Functions

Google V8 JavaScript engine, Node.js: An Alternative to
Apache

JSX extension and closing character, And Then There’s
HTML5

looping, Looping-The continue Statement

break command, Breaking Out of a Loop

continue statement, The continue Statement

do…while loops, do…while Loops

for loops, for Loops

for…in loops, Associative Arrays

for…of loop, for Loops

while loops, while Loops

Node.js full-stack development, Node.js: An Alternative
to Apache

objects

about objects, JavaScript Objects

accessing objects, Accessing Objects

associative array structure from, Associative Arrays

class declaration, Declaring a Class

creating an object, JavaScript Objects

display of object turned off, Alternatives to Adding
and Removing Elements

Document Object Model basis, The Document
Object Model-The Document Object Model

events attached to, Attaching Events to Objects in a
Script

for…in loop iterating through, Associative Arrays

instance created, Creating an Instance

instances of classes, Declaring a Class

legacy object-functions, The Legacy Objects
Simulated with Functions

static methods and properties, Static Methods and
Properties

visibility, Alternatives to Adding and Removing
Elements

window object properties, Other Properties

window object property documentation online,
Other Properties

operators, Operators-Escape Characters, Operators-
Logical operators

about, Operators, Operators

arithmetic, Arithmetic Operators, Operators

assignment, Assignment Operators, Operators

associativity, Associativity

binary operators, Operators

bitwise, Operators

comparison, Comparison Operators, Operators,
Comparison operators

incrementing, decrementing, Incrementing,
Decrementing, and Shorthand Assignment,
Operators

logical, Logical Operators, Operators, Logical
operators

precedence, Operator Precedence

precedence documentation online, Operator
Precedence

relational, Relational Operators-Logical operators

string, Operators

ternary operator, Operators, The ? Operator

truthy and falsy values, Truthy and falsy values

unary operators, Operators

outputting results, Outputting the Results

alert pop-up window, Using alert

console.log, Using console.log

document.write function, Using JavaScript-Using
JavaScript, Using document.write

writing directly into HTML elements, Writing into
Elements

React library, The Benefits of PHP, MySQL, JavaScript,
CSS, and HTML

(see also React JavaScript library)

regular expressions, Using Regular Expressions in
JavaScript

request/response sequence, The Request/Response
Procedure

semicolons, JavaScript and HTML Text, Semicolons

URL reference in, The Document Object Model

variables, Variables-Arrays

about, Variables

arrays, Arrays

explicit casting, Explicit Casting

global variables, Global Variables

let keyword, Using let

local variables, Local Variables

loosely typed, Variable Typing

naming rules, Variables

numeric variables, Numeric Variables

objects versus, JavaScript Objects

string variables, String Variables

TypeScript for types, Variable Typing

variable typing, Variable Typing-Variable Typing

variable typing documentation online, Variable
Typing

XML via Babel JSX extension, Accessing the React Files

JavaScript Object Notation (see JSON (JavaScript Object
Notation))

join array method (JavaScript), join

joining tables (MySQL), Joining Tables-Using AS

JOIN…ON, JOIN…ON

NATURAL JOIN, NATURAL JOIN

jQuery

$ prefix for aliases, Variables

about, Introduction to React

asynchronous communication, The Benefits of PHP,
MySQL, JavaScript, CSS, and HTML

as framework, Using Frameworks for Asynchronous
Communication, Introduction to React

supplemental material online, Using Code Examples

jQuery Mobile supplemental material online, Using Code
Examples

JSDoc comments, Using Comments

JSON (JavaScript Object Notation) asynchronous
communication, Sending JSON Requests-Sending JSON
Requests

JSX (JavaScript XML)

closing character, And Then There’s HTML5

inline conditional statements, Inline JSX Conditional
Statements

multiple lines, Events in React

React based around, Introduction to React

justifying content

flexbox layout, Justifying Content

grid layout, Alignment

K

keys (see indexes (MySQL))

L

labels in forms (HTML), Labels

LAMP (Linux, Apache, MySQL, PHP), What Is a WAMP,
MAMP, or LAMP?

checking for preinstalled web server, Installing a LAMP
on Linux

MySQL

command line interface startup, Linux users

table names case-sensitive, MySQL Commands

pager less; command to page output, SELECT

length property (JavaScript), Using the DOM

arrays, Assigning element values

window object, Other Properties

less than (<) operator

JavaScript, Comparison Operators, Comparison operators

PHP, Comparison operators, Comparison operators

less than or equal to (<=) operator

JavaScript, Comparison Operators, Comparison operators

PHP, Comparison operators, Comparison operators

let keyword (JavaScript), Using let

LIKE keyword (MySQL), WHERE

% before or after text, WHERE

LIMIT keyword (MySQL), LIMIT

caution about zero-indexed offsets, LIMIT

__LINE__ constant (PHP), Predefined Constants

links object (JavaScript), Using the DOM

Linux installation of Node.js, Installing Node.js on Linux

Linux, Apache, MySQL, PHP (LAMP), What Is a WAMP,
MAMP, or LAMP?

checking for preinstalled web server, Installing a LAMP
on Linux

MySQL

command line interface startup, Linux users

table names case-sensitive, MySQL Commands

pager less; command to page output, SELECT

list attribute in forms (HTML), The list attribute

list function (PHP), The foreach…as Loop

lists and keys (React), Using Lists and Keys

literals

definition of literal, Literals and Variables

in expressions

JavaScript, Literals and Variables

PHP, Literals and Variables

literal strings in PHP, String types

non-literals versus, Literals and Variables

loadHTML method (PHP), Wildcard Matching

local variables

JavaScript, Local Variables

PHP, Local variables-Local variables, Recap of Variable
Scope

static variables in PHP, Static variables

localhost hostname to view document root

about document root, Accessing the Document Root
(Windows)

Linux, Installing a LAMP on Linux

macOS, Installing AMPPS on macOS

Hello World file into document root, Installing
AMPPS on macOS

Node.js, Getting Started with Node.js

web server, Building a Functioning Web Server

phpMyAdmin tool for MySQL, Accessing MySQL via
phpMyAdmin

serving pages from document root versus filesystem,
Accessing the Document Root (Windows), Installing
AMPPS on macOS

social networking site, Online Repository

Windows, Testing the Installation

Hello World file into document root, Accessing the
Document Root (Windows)

LOCK command (MySQL), MySQL Commands

before running mysqldump, Using mysqldump

locking files for multiple accesses (PHP), Locking Files for
Multiple Accesses

as advisory lock, Locking Files for Multiple Accesses

response time and, Locking Files for Multiple Accesses

logging in

HTTP authentication, HTTP Authentication-An Example
Program

example program, An Example Program-An
Example Program

hash storage documentation online, Using
password_hash

htmlspecialchars function, HTTP Authentication

storing usernames and passwords, Storing
Usernames and Passwords-Using password_verify

validating username and password, HTTP
Authentication, login.php

verifying password against hash, Using
password_verify, login.php

login file for PHP querying MySQL, Creating a Login
File-Creating a Login File

MySQL

logging in as root, Windows users

logging in as user, Creating users

social networking site, Logging In, login.php

working remotely, Logging In

logical operators

JavaScript, Logical Operators, Operators, Logical
operators

short-circuit evaluation, Logical operators

MySQL queries, Using Logical Operators

PHP, Logical operators, Logical operators-Logical
operators

table of inputs and results, Logical operators

LONGBLOB data type (MySQL), The BLOB data types

LONGTEXT data type (MySQL), The TEXT data types

looping

about, Looping

JavaScript, Looping-The continue Statement

break command, Breaking Out of a Loop

continue statement, The continue Statement

do…while loops, do…while Loops

for loops, for Loops

for…in loops, Associative Arrays

for…of loop, for Loops

while loops, while Loops

PHP, Looping-The continue Statement

breaking out of loop, Breaking Out of a Loop

breaking out of nested loops, Breaking Out of a
Loop

continue statement, The continue Statement

do…while loops, do…while Loops

for loops, for Loops-for Loops

foreach…as loops, The foreach…as Loop-The
foreach…as Loop, reset

while loops, while Loops-while Loops

M

Mac, Apache, MySQL, PHP (MAMP), What Is a WAMP,
MAMP, or LAMP?

installing AMPPS on macOS, Installing AMPPS on
macOS

document root, Installing AMPPS on macOS

document root Hello World, Installing AMPPS on
macOS

PHP version, Installing AMPPS on macOS

serving pages from document root versus filesystem,
Installing AMPPS on macOS

MySQL

command line interface startup, macOS users

table names case-sensitive, MySQL Commands

macOS installation of Node.js, Installing Node.js on macOS-
Installing Node.js on macOS

magic constants of PHP, Predefined Constants

magic quotes feature removed (PHP), Steps You Can Take

MAMP (Mac, Apache, MySQL, PHP), What Is a WAMP,
MAMP, or LAMP?

installing AMPPS on macOS, Installing AMPPS on
macOS

document root, Installing AMPPS on macOS

document root Hello World, Installing AMPPS on
macOS

PHP version, Installing AMPPS on macOS

serving pages from document root versus filesystem,
Installing AMPPS on macOS

MySQL

command line interface startup, macOS users

table names case-sensitive, MySQL Commands

many-to-many relationships, Many-to-Many

many-to-one relationships, One-to-Many

map array method (JavaScript), map

MariaDB as clone of MySQL, MariaDB: The MySQL Clone

open source, MariaDB: The MySQL Clone

MATCH…AGAINST command (MySQL), MATCH…
AGAINST-MATCH…AGAINST in Boolean mode

Boolean mode, MATCH…AGAINST in Boolean mode

double quote marks for exact phrase, MATCH…
AGAINST in Boolean mode

max attribute in forms (HTML), The min and max attributes

step attribute, The step attribute

MEDIUMBLOB data type (MySQL), The BLOB data types

MEDIUMINT data type (MySQL), Numeric data types

MEDIUMTEXT data type (MySQL), The TEXT data types

members of objects, Property and Method Scope

scope of members, Property and Method Scope

static members, Static Properties

metacharacters in regular expressions, Matching Through
Metacharacters

__METHOD__ constant (PHP), Predefined Constants

methods of objects, Terminology, Declaring a Class

JavaScript, The Document Object Model

method chaining, Returning a Value

PHP, Accessing Objects

final methods in inheritance, Final methods

scope of object members, Property and Method
Scope

static methods, Static Methods

writing methods, Writing Methods

Microsoft Visual C++ Redistributable, Installing AMPPS on
Windows

MIME (Multipurpose Internet Mail Extension) content type,
Using $_FILES

min attribute in forms (HTML), The min and max attributes

step attribute, The step attribute

minlength attribute in forms (HTML), Validating the username

.mjs file extension, Getting Started with Node.js

mktime function (PHP), Date and Time Functions

mobile phones

React Native, React Native

screen space information, Other Properties

modularization of PHP code, PHP Modularization

modulus (%) operator

JavaScript, Arithmetic Operators

PHP, Arithmetic operators

modulus assignment (%=) operator

JavaScript, Assignment Operators

PHP, Assignment operators

moving a file (PHP), Moving a File

multicolumn layout (CSS), Multicolumn Layout

multidimensional arrays

JavaScript, Arrays, Multidimensional Arrays

PHP, Multidimensional Arrays-Multidimensional Arrays

multiline strings (PHP), Multiline Strings-Using a nowdoc

browser handling of, Using a nowdoc

multipart/form-data encoding, Uploading Files

multiplication (*) operator

JavaScript, Arithmetic Operators

PHP, Arithmetic operators

multiplication and assignment (*=) operator

JavaScript, Assignment Operators

PHP, Assignment operators

MyISAM storage engine

FULLTEXT indexes and tables, Creating a FULLTEXT
index

searching for “and”, MATCH…AGAINST

MySQL

about, Introduction to MySQL

default user and password, Windows users

default user and password risks, Preventing Hacking
Attempts

scalability benchmarks online, Introduction to
MySQL

slow database responsiveness, Creating a
FULLTEXT index

SQL as Structured Query Language, MySQL Basics

ways of interacting with, Accessing MySQL via the
Command Line

about using, Using MySQL

example of username check, Bringing It All
Together-Bringing It All Together

putting it all together (see social networking site)

accessing via phpMyAdmin, Accessing MySQL via
phpMyAdmin

backing up, Backing Up and Restoring-Restoring from a
Backup File

all databases backed up, Backing up all databases

dumping data into CSV, Dumping Data in CSV
Format

mysqldump, Using mysqldump

mysqldump redirected to a file, Creating a Backup
File

planning your backups, Planning Your Backups

restore tested periodically, Planning Your Backups

restoring from a backup file, Restoring from a
Backup File

single table backup, Backing up a single table

basics, MySQL Basics

database terms, Key Database Terms

benefits of, The Benefits of PHP, MySQL, JavaScript,
CSS, and HTML

command line interface startup, Accessing MySQL via
the Command Line

Linux, Linux users

macOS, macOS users

remote server, MySQL on a remote server

Windows, Windows users

command line use, Using the Command-Line Interface

logging in as root, Windows users

logging in as user, Creating users

prompts, The semicolon

semicolon, The semicolon

\c to cancel input, Canceling a command

commands commonly used, MySQL Commands

adding a new column, Adding a new column

adding a new column for primary key, Primary keys

adding data to a table, Adding data to a table,
Joining Tables

adding data to a table in a script, Adding Data

case-insensitive, MySQL Commands

changing column data type, Changing the data type
of a column

creating a database, Creating a database,
functions.php

creating a table, Creating a table-Creating a table,
Creating a Table

creating a table with an auto-incrementing column,
The AUTO_INCREMENT attribute

creating a table with indexes, Adding indexes when
creating tables

creating a table with primary key, Primary keys

creating users, Creating users-Creating users,
functions.php

deleting a table, Deleting a table

deleting a table in a script, Dropping a Table

logging in as root, Windows users

logging in as user, Creating users

renaming a column, Renaming a column

renaming a table, Renaming a table

data types, Data Types

AUTO_INCREMENT attribute, The
AUTO_INCREMENT attribute-The
AUTO_INCREMENT attribute, Primary keys

BINARY versus VARBINARY, The BINARY data
type

BLOB types, The BLOB data types

changing column data type, Changing the data type
of a column

CHAR versus VARCHAR, Data Types

character sets, Data Types

DATE and TIME types, DATE and TIME types

numeric types, Numeric data types

TEXT types, The TEXT data types

database design, Database Design

functions documentation online, MySQL Functions

hacking prevention via placeholders, Using Placeholders-
Using Placeholders

indexes, Indexes-Using Logical Operators

about, Indexes

creating a FULLTEXT index, Creating a
FULLTEXT index

creating via ALTER TABLE, Creating an Index

creating via CREATE INDEX, Using CREATE
INDEX

creating when creating table, Adding indexes when
creating tables

primary keys, Primary keys-Primary keys, Primary
Keys: The Keys to Relational Databases

slow database responsiveness, Creating a
FULLTEXT index

InnoDB storage engine, Creating a table

input on single or multiple lines, Creating a table

joining tables, Joining Tables-Using AS

MariaDB clone, MariaDB: The MySQL Clone

Node.js working with, Working with Modules, Accessing
MySQL-Accessing MySQL

MySQL module install, Installing Modules with
npm

normalization, Normalization-When Not to Use
Normalization

duplicates risking data, Normalization

First Normal Form, First Normal Form-First Normal
Form

Second Normal Form, Second Normal Form-Second
Normal Form

Third Normal Form, Third Normal Form

when not to use normalization, When Not to Use
Normalization

open source, Preface, The Benefits of PHP, MySQL,
JavaScript, CSS, and HTML, About Open Source

PHP querying a database, Querying a MySQL Database
with PHP-Preventing JavaScript Injection into HTML

about, Querying a MySQL Database with PHP

about the process, The Process

connecting to database, Connecting to a MySQL
Database

connection closed, Closing a Connection

deleting a record, Running the Program

error messages trapped, Connecting to a MySQL
Database

fetching a result, Fetching a Result-Fetching a
Result

fetching a row, Fetching a Row While Specifying
the Style

login file created, Creating a Login File-Creating a
Login File

practical example, A Practical Example-A Practical
Example

query built and executed, Building and Executing a
Query

placeholders, Using Placeholders-Using Placeholders

privacy and databases, Databases and Privacy

prompts, The semicolon

querying a database, Querying a MySQL Database-
GROUP BY

AS keyword, Using AS

DELETE a row, DELETE

GROUP BY keywords, GROUP BY

LIKE keyword, WHERE

LIMIT keyword, LIMIT

logical operators, Using Logical Operators

MATCH…AGAINST, MATCH…AGAINST-
MATCH…AGAINST in Boolean mode

ORDER BY keywords, ORDER BY

phpMyAdmin tool for MySQL, Accessing MySQL
via phpMyAdmin

scripting, Retrieving Data, Performing Additional
Queries

SELECT, SELECT

SELECT COUNT, SELECT COUNT

SELECT DISTINCT, SELECT DISTINCT

UPDATE…SET, UPDATE…SET

WHERE keyword, WHERE

relationships, Relationships-Many-to-Many

about relational databases, Relationships

many-to-many, Many-to-Many

one-to-many, One-to-Many

one-to-one, One-to-One

privacy and, Databases and Privacy

request/response sequence, The Request/Response
Procedure-The Request/Response Procedure

supplemental material online, Using Code Examples

transactions, Transactions-Using EXPLAIN

about, Transactions

EXPLAIN, Using EXPLAIN

ROLLBACK, Using ROLLBACK

transaction storage engines, Transaction Storage
Engines

triggers for automatic changes, When Not to Use
Normalization

version, Creating a table

working remotely via SSH, Working Remotely

mysql commands

logging in as root, Windows users

logging in as user, Creating users

login file created, Creating a Login File-Creating a Login
File

restoring from a backup file, Restoring from a Backup
File

mysql> prompt, The semicolon

mysqldump for backing up, Using mysqldump

dumping data into CSV, Dumping Data in CSV Format

redirecting data to a file, Creating a Backup File

single table backup, Backing up a single table

N

names

camelCase, Defining a Function

constants in uppercase letters, Constants

global variables in uppercase letters, Global variables

JavaScript

classes, instances, properties, methods, Creating an
Instance

CSS hyphenation to camelCase, Accessing CSS
Properties from JavaScript

functions, Variables, Defining a Function

period separating objects from properties, methods,
The Document Object Model

variables, Variables

window object name property, Other Properties

MySQL

aliases via AS keyword, Using AS

lowercase for table names, MySQL Commands

PHP

about case sensitivity, File Handling

arrays and variables cannot share names, is_array

functions, Defining a Function

variable naming rules, Variable-naming rules

__ (double underscore), Predefined Constants,
Writing Methods

React events in camelCase, Events in React

__NAMESPACE__ constant (PHP), Predefined Constants

NaN (Not a Number), Expressions

NATURAL JOIN keywords, NATURAL JOIN

negation of a character class in regular expressions, Negation

new keyword for creating an object

JavaScript, Creating an Instance

PHP, Creating an Object

newline (\n) character, Escaping characters, Escape Characters

. wildcard in regular expressions, Wildcard Matching

nginx, Introduction to Node.js

Node.js

about, Introduction to Node.js

Apache alternative, Node.js: An Alternative to
Apache, Introduction to Node.js

open source, Introduction to Node.js

building a web server, Building a Functioning Web
Server-Building a Functioning Web Server

localhost, Building a Functioning Web Server

.env support, Accessing MySQL

MySQL username and password, Accessing MySQL

further information, Further Information

Node.js website, Further Information

getting started, Getting Started with Node.js-Getting
Started with Node.js

Ctrl-C to exit a program, Getting Started with
Node.js

ECMAScript modules, Getting Started with Node.js

HTTP connections, Getting Started with Node.js

localhost, Getting Started with Node.js

port number, Getting Started with Node.js

installing

Linux, Installing Node.js on Linux

macOS, Installing Node.js on macOS-Installing
Node.js on macOS

testing via node -v, Installing Node.js on Windows,
Installing Node.js on macOS, Installing Node.js on
Linux

Windows, Installing Node.js on Windows-Installing
Node.js on Windows

npm, Introduction to Node.js

documentation online, Installing Modules with npm

installing modules with, Installing Modules with
npm

website, Installing Modules with npm

working with modules, Working with Modules-Accessing
MySQL

about, Working with Modules

built-in modules, Built-in Modules

.env support, Accessing MySQL

installing with npm, Installing Modules with npm

MySQL module, Accessing MySQL-Accessing
MySQL

MySQL module install, Installing Modules with
npm

non-literals versus literals, Literals and Variables

nonword character (\W) in regular expressions, Summary of
Metacharacters

normalization, Normalization-When Not to Use Normalization

duplicates risking data, Normalization

First Normal Form, First Normal Form-First Normal
Form

Second Normal Form, Second Normal Form-Second
Normal Form

Third Normal Form, Third Normal Form

when not to use normalization, When Not to Use
Normalization

not (!) logical operator

JavaScript, Logical Operators, Logical operators

PHP, Logical operators, Logical operators-Logical
operators

not equal to (!=) operator

JavaScript, Comparison Operators, Equality operators

PHP, Comparison operators, Equality operators

not identical to (!==) operator

JavaScript, Comparison Operators, Equality operators

PHP, Comparison operators, Equality operators

NOT operator in MySQL WHERE queries, Using Logical
Operators

nowdoc (<<<) operator (PHP), Using a nowdoc

npm (Node.js), Introduction to Node.js

documentation online, Installing Modules with npm

installing modules with, Installing Modules with npm

Bootstrap icon library, header.php

MySQL module, Installing Modules with npm

website, Installing Modules with npm

NULL (PHP), TRUE or FALSE?

FALSE different, TRUE or FALSE?

null as falsy (JavaScript), Truthy and falsy values

number and range in forms (HTML), The number and range
input types

numeric data types (MySQL)

numeric types, Numeric data types

signed versus unsigned numbers, Numeric data types

UNSIGNED qualifier, Numeric data types

numeric variables

JavaScript, Numeric Variables

PHP, Numeric variables

numerically indexed arrays (PHP), Numerically Indexed
Arrays-Numerically Indexed Arrays

assignment via array keyword, Assignment Using the
array Keyword

foreach…as loops, The foreach…as Loop

multidimensional arrays, Multidimensional Arrays

O

objects

about object-oriented programming, PHP Functions and
Objects, PHP Objects

destructors, Destructors

members, Property and Method Scope

terminology, Terminology, Declaring a Class

Document Object Model in JavaScript design, The
Document Object Model-The Document Object Model

(see also Document Object Model (DOM))

JavaScript

about objects, JavaScript Objects

accessing objects, Accessing Objects

associative array structure from, Associative Arrays

class declaration, Declaring a Class

creating an object, JavaScript Objects

display of object turned off, Alternatives to Adding
and Removing Elements

Document Object Model basis, The Document
Object Model-The Document Object Model

events attached to, Attaching Events to Objects in a
Script

for…in loop iterating through, Associative Arrays

instance created, Creating an Instance

instances of classes, Declaring a Class

legacy object-functions, The Legacy Objects
Simulated with Functions

period separating from properties, The Document
Object Model

static methods and properties, Static Methods and
Properties

visibility, Alternatives to Adding and Removing
Elements

window object properties, Other Properties

window object property documentation online,
Other Properties

methods, Terminology, Declaring a Class

interface of the object, Terminology

JavaScript, The Document Object Model

PHP

about objects, PHP Objects

accessing objects, Accessing Objects

cloning objects, Cloning Objects

constructors, Creating an Object, Constructors

creating an object, Creating an Object

declaring a class, Declaring a Class

declaring constants, Declaring Constants

declaring properties, Declaring Properties

destructors, Destructors

inheritance, Inheritance-Final methods

inheritance caution, Inheritance

methods, Writing Methods

passed by reference, Cloning Objects

print_r function for human-readable, Declaring a
Class, Accessing Objects

scope of properties and methods, Property and
Method Scope

static methods, Static Methods

static properties, Static Properties

$this, Writing Methods

properties, Terminology, Declaring a Class

JavaScript, The Document Object Model

JavaScript inline, Inline JavaScript

occurrences (see instances of classes)

octal (\XXX) escape character, Escape Characters

one-to-many relationships, One-to-Many

one-to-one relationships, One-to-One

one-way function for password, Storing Usernames and
Passwords

onerror event for error handling (JavaScript), Using onerror

syntax errors caught, Using try…catch

online resources (see resources online)

onmouseover property (JavaScript), Inline JavaScript

opacity property (CSS), The opacity Property

open source

about, About Open Source

Apache as, About Open Source

Bootstrap icon library as, header.php

FileZilla as, Transferring Files

MariaDB as, MariaDB: The MySQL Clone

MySQL as, Preface, The Benefits of PHP, MySQL,
JavaScript, CSS, and HTML, About Open Source,
Introduction to MySQL

Node.js as, Introduction to Node.js

PHP as, Preface, The Benefits of PHP, MySQL,
JavaScript, CSS, and HTML, About Open Source

React as, Accessing the React Files

Open Worldwide Application Security Project (OWASP)
article on XSS prevention, Sanitizing Input

opening a file (PHP), Creating a File

file handle, Creating a File

modes, Creating a File

OpenType (.otf) fonts, Web Fonts

operating system calls (PHP), System Calls-System Calls

cautions, System Calls

escapeshellcmd function, System Calls

operators

about, Operators

JavaScript, Operators-Escape Characters, Operators-
Logical operators

about, Operators, Operators

arithmetic, Arithmetic Operators, Operators

assignment, Assignment Operators, Incrementing,
Decrementing, and Shorthand Assignment,
Operators

associativity, Associativity

binary operators, Operators

bitwise, Operators

comparison, Comparison Operators, Operators,
Comparison operators

equality, Comparison Operators

incrementing, decrementing, Incrementing,
Decrementing, and Shorthand Assignment,
Operators

logical, Operators

precedence, Operator Precedence

precedence documentation online, Operator
Precedence

relational, Relational Operators-Logical operators

string, Operators

ternary operator, Operators, The ? Operator

unary operators, Operators

PHP, Operators-Operator precedence, Operators

arithmetic, Operators, Operators

assignment, Assignment operators, Operators

associativity, Associativity

binary operators, Operators

bitwise, Operators

comparison, Comparison operators, Operators,
Comparison operators

concatenation, String concatenation, Operators

equality, Comparison operators

execution, Operators, Operators

increment/decrement, Variable incrementing and
decrementing, Operators

logical, Logical operators, Operators, Logical
operators-Logical operators

precedence table of operators, Operator Precedence

relational, Relational Operators

ternary operator, Operators

unary operators, Operators

variable assignment, Variable Assignment-Variable
incrementing and decrementing

precedence, Operator precedence, Operator Precedence

Or (||) logical operator

JavaScript, Logical Operators, Logical operators

PHP, Logical operators

higher precedence than and, or, Logical operators

or logical operator (PHP), Logical operators, Logical
operators-Logical operators

lower precedence than && and ||, Logical operators

OR operator in MySQL WHERE queries, Using Logical
Operators

ORDER BY keywords (MySQL), ORDER BY

ASC for default ascending order, ORDER BY

DESC for descending order, ORDER BY

origin of URL, Origin

same-origin and cross-origin requests, Same-origin and
cross-origin requests

.otf (OpenType) fonts, Web Fonts

overflow property of elements (CSS), Element Overflow

override attributes in forms (HTML), Override attributes

OWASP (Open Worldwide Application Security Project)
article on XSS prevention, Sanitizing Input

O’Reilly Learning Platform, O’Reilly Online Learning

Node.js, Further Information

React, Including babel.js

P

packet sniffing, Session Security

pager less; command to page output (Linux), SELECT

nopager; to restore standard output, SELECT

parent class in inheritance, Terminology

parent operator in inheritance, The parent keyword

parentheses

functions

JavaScript, Functions, Anonymous Functions,
Arrow Functions, Using setTimeout

PHP, PHP Functions, Defining a Function

regular expression grouping, Grouping Through
Parentheses

Parse error and semicolons (PHP), Semicolons, Multiline
Strings

parseFloat function (JavaScript), Explicit Casting

parseInt function (JavaScript), Explicit Casting

partitions of tables (MySQL), Using EXPLAIN

password displayed as asterisks, Logging In

password_hash function (PHP), Using password_hash

example program, An Example Program-An Example
Program

password_verify function (PHP), Using password_verify

example program, An Example Program-An Example
Program

social networking site, login.php-login.php

path traversal attack, Building a Functioning Web Server

PDO (PHP Data Objects)

about, Creating a Login File

fetch method data styles, Fetching a Row While
Specifying the Style

documentation online, Fetching a Row While
Specifying the Style

PHP querying MySQL database

connecting to MySQL server, Connecting to a
MySQL Database

connection closed, Closing a Connection

database login file, Creating a Login File

fetching a result, Fetching a Result-Fetching a
Result

fetching a row, Fetching a Row While Specifying
the Style

practical example, A Practical Example-A Practical
Example

query built and executed, Building and Executing a
Query

prepare method, Using Placeholders

quote method to sanitize, The $_POST Array, Steps You
Can Take-Steps You Can Take

social networking site functions.php, functions.php

period (.) in JavaScript, The Document Object Model

multiple properties and methods in one expression,
Returning a Value

window object properties, Other Properties

Perl versus PHP, The Benefits of PHP, MySQL, JavaScript,
CSS, and HTML

PHP

<?php and ?>, Using PHP, Incorporating PHP Within
HTML

<? and ?> deprecated, Incorporating PHP Within
HTML

Hello World, Incorporating PHP Within HTML

heredoc operator alternative, Displaying the Form

omitting closing tag, Incorporating PHP Within
HTML

about structure of

basic syntax, Basic Syntax

comments, Using Comments

operators, Operators-Operator precedence

variable assignment, Variable Assignment-Variable
incrementing and decrementing

variables, The $ symbol-Variable-naming rules

about using, Using PHP, The Apache Web Server

example of username check, Bringing It All
Together-Bringing It All Together

first PHP program, String variables

putting it all together (see social networking site)

arrays

$GLOBALS array, Superglobal variables

$_COOKIE array, Superglobal variables

$_ENV array, Superglobal variables

$_FILES array, Superglobal variables, Using
$_FILES, Adding a Profile Image, Adding a Profile
Image

$_GET array, Superglobal variables, The $_POST
Array

$_POST array, Superglobal variables, The $_POST
Array

$_REQUEST array, Superglobal variables

$_SERVER array, Superglobal variables, HTTP
Authentication, HTTP Authentication, HTTP
Authentication, An Example Program-An Example
Program, Starting a Session

$_SESSION array, Superglobal variables, Starting a
Session-Starting a Session, Preventing session
hijacking, Preventing session hijacking

array functions, Using Array Functions-end

assignment (=>) operator, Assignment Using the
array Keyword

assignment via array keyword, Assignment Using
the array Keyword

associative arrays, Associative Arrays, Fetching a
Row While Specifying the Style

creating a new array, Arrays

foreach…as loops, The foreach…as Loop-The
foreach…as Loop, reset

multidimensional arrays, Multidimensional Arrays-
Multidimensional Arrays

numerically indexed arrays, Numerically Indexed
Arrays-Numerically Indexed Arrays

superglobal variables, Superglobal variables

benefits of, The Benefits of PHP, MySQL, JavaScript,
CSS, and HTML

conditionals, Conditionals-Alternative syntax

? operator, The Difference Between the echo and
print Commands, Operators, The ? (or Ternary)
Operator

else statement, The else Statement-The else
Statement

elseif statement, The elseif Statement

if statement, The if Statement-The if Statement

switch statement, The switch Statement-Alternative
syntax

constants, Constants

constants inside classes, Declaring Constants

predefined constants, Predefined Constants

data objects (see PDO (PHP Data Objects))

date and time functions, Date and Time Functions-Using
checkdate

2038 as end of time, Date and Time Functions

date constants, Date Constants

validity check via checkdate, Using checkdate

documentation online

date function, Date and Time Functions

variable type conversion rules, Variable Typing

dynamic output from server, Using PHP, Introduction to
PHP

error messages trapped, Connecting to a MySQL
Database, Deleting a Record

expressions, Expressions-Literals and Variables

Boolean expressions, TRUE or FALSE?

definition, Expressions

literals and variables, Literals and Variables

statements from, Literals and Variables

file handling (see file handling (PHP))

files included into current file, Including and Requiring
Files

files required to be included, Using require and
require_once

functions, Functions, PHP Functions-PHP Functions

defining a function, Defining a Function

expression evaluation, Returning a Value

function_exists function, PHP Version Compatibility

returning a value, Returning a Value-Returning a
Value

returning an array, Returning an Array

returning global variables, Returning Global
Variables

GD library, The Apache Web Server

HTML and PHP, Incorporating PHP Within HTML-This
Book’s Examples

looping, Looping-The continue Statement

about, Looping

breaking out of loop, Breaking Out of a Loop

breaking out of nested loops, Breaking Out of a
Loop

continue statement, The continue Statement

do…while loops, do…while Loops

for loops, for Loops-for Loops

foreach…as loops, The foreach…as Loop-The
foreach…as Loop, reset

while loops, while Loops-while Loops

modularization, PHP Modularization

MySQL database queries, Querying a MySQL Database
with PHP-Preventing JavaScript Injection into HTML

about, Querying a MySQL Database with PHP

about the process, The Process

connecting to database, Connecting to a MySQL
Database

connection closed, Closing a Connection

deleting a record, Running the Program

error messages trapped, Connecting to a MySQL
Database

fetching a result, Fetching a Result-Fetching a
Result

fetching a row, Fetching a Row While Specifying
the Style

login file created, Creating a Login File-Creating a
Login File

practical example, A Practical Example-A Practical
Example

query built and executed, Building and Executing a
Query

Node.js not able to run scripts, Node.js: An Alternative to
Apache

objects

about objects, PHP Objects

accessing objects, Accessing Objects

cloning objects, Cloning Objects

constructors, Creating an Object, Constructors

creating an object, Creating an Object

declaring a class, Creating an Object

declaring constants, Declaring Constants

declaring properties, Declaring Properties

destructors, Destructors

inheritance, Inheritance-Final methods

inheritance caution, Inheritance

methods, Writing Methods

passed by reference, Cloning Objects

print_r function for human-readable, Declaring a
Class, Accessing Objects

scope of properties and methods, Property and
Method Scope

static methods, Static Methods

static properties, Static Properties

$this, Writing Methods

open source, Preface, The Benefits of PHP, MySQL,
JavaScript, CSS, and HTML, About Open Source

operators, Operators-Operator precedence, Operators

arithmetic, Operators, Operators

assignment, Assignment operators, Operators

associativity, Associativity

binary operators, Operators

bitwise, Operators

comparison, Comparison operators, Operators,
Comparison operators

concatenation, String concatenation, Operators

equality, Comparison operators, Equality operators-
Equality operators

execution, Operators, Operators

increment/decrement, Variable incrementing and
decrementing, Operators

logical, Logical operators, Operators, Logical
operators-Logical operators

precedence, Operator precedence, Operator
Precedence

precedence table of operators, Operator Precedence

relational, Relational Operators

ternary operator, Operators

unary operators, Operators

variable assignment, Variable Assignment-Variable
incrementing and decrementing

output via echo and print, Outputting the Results

echo versus print command, The Difference
Between the echo and print Commands

phpMyAdmin tool for MySQL, Accessing MySQL via
phpMyAdmin

regular expressions, Using Regular Expressions in PHP

(see also regular expressions)

request/response sequence, The Request/Response
Procedure-The Request/Response Procedure

supplemental material online, Using Code Examples

book’s examples, This Book’s Examples

system calls, System Calls-System Calls

validation of user input, Redisplaying a Form After PHP
Validation-Redisplaying a Form After PHP Validation

variables, The $ symbol-Variable-naming rules

about, Variables

arrays, Arrays-Two-dimensional arrays

arrays, two-dimensional, Two-dimensional arrays-
Two-dimensional arrays

dollar ($) symbol, The $ symbol

explicit casting, Implicit and Explicit Casting

global variables, Global variables, Recap of Variable
Scope

implicit casting, Implicit and Explicit Casting

incrementing and decrementing, Variable
incrementing and decrementing

local variables, Local variables-Local variables,
Recap of Variable Scope

loosely typed, Variable Typing, Equality operators,
Implicit and Explicit Casting

naming rules, Variable-naming rules

numeric, Numeric variables

scope, Variable Scope-Superglobals and security,
Recap of Variable Scope

static variables, Static variables, Recap of Variable
Scope

string, String variables-String variables

superglobal variables, Superglobal variables

$this, Writing Methods

variable typing, Variable Typing

version, PHP Functions and Objects, PHP Version
Compatibility

checking if a function exists, PHP Version
Compatibility

PHP Data Objects (see PDO (PHP Data Objects))

.php file extension, Using PHP

phpinfo function, PHP Functions

phpMyAdmin tool for MySQL, Accessing MySQL via
phpMyAdmin

documentation online, Accessing MySQL via
phpMyAdmin

placeholder attribute in forms (HTML), The placeholder
attribute

placeholders preventing hacking (MySQL), Using
Placeholders-Using Placeholders

social networking site functions.php, functions.php

plus sign (+) in regular expressions, Matching Through
Metacharacters

HTML tag match expressions, Wildcard Matching

pop array method (JavaScript), push and pop-push and pop

port number for web server, String variables

Node.js, Getting Started with Node.js

POST method (HTTP)

browsers never cache, Using GET Instead of POST

first asynchronous program, Your First Asynchronous
Program-The Server Half of the Asynchronous Process

XMLHttpRequest object, Using XMLHttpRequest

forms, The $_POST Array

sanitizing via htmlentities function, Superglobals
and security, Preventing JavaScript Injection into
HTML, Sanitizing Input

image uploader, Uploading Files

PHP querying MySQL database, A Practical Example

power (**) operator (PHP), Arithmetic operators

precedence of operators, Operator Precedence

JavaScript, Operator Precedence

associativity, Associativity

documentation online, Operator Precedence

table of operator precedence, Operator Precedence

PHP, Operator precedence

associativity of operators, Associativity

table of operator precedence, Operator Precedence

PREPARE command (MySQL), Using Placeholders

prepare method (PDO), Using Placeholders

colon prefix for values, Using Placeholders

HTTP authentication, An Example Program-An Example
Program

starting a session, Starting a Session

social networking site functions.php, functions.php

primary keys (MySQL), Primary keys-Primary keys, Primary
Keys: The Keys to Relational Databases

normalization, Normalization-When Not to Use
Normalization

print command (PHP)

echo command versus, The Difference Between the echo
and print Commands

expression evaluation, Returning a Value

PHP output via print, Outputting the Results

TRUE, FALSE, NULL, TRUE or FALSE?

printf function (PHP), Using printf

precision setting, Precision Setting

numeric padding setting, Precision Setting

string padding, String Padding

print_r function (PHP)

arrays, Numerically Indexed Arrays

for loop and echo instead, Numerically Indexed
Arrays

objects, Declaring a Class, Accessing Objects

privacy

databases and, Databases and Privacy

history object in web browsers, Using the DOM

third-party site use, Google Web Fonts

Privacy Sandbox (Google), Using Sessions

private members, Property and Method Scope

privileges (see GRANT command (MySQL))

prompts for MySQL, The semicolon

properties of objects, Terminology, Declaring a Class

JavaScript, The Document Object Model

accessing CSS properties, Accessing CSS Properties
from JavaScript

inline JavaScript, Inline JavaScript

window object properties, Other Properties

window object property documentation, Other
Properties

PHP, Accessing Objects

declaring, Declaring Properties

scope of object members, Property and Method
Scope

static properties, Static Properties

$this, Writing Methods

React props, Props and Components

protected members, Property and Method Scope

pseudoclasses (CSS), Attribute Selectors

script with hover pseudoclass, Shorthand Syntax

pseudoelements (CSS), Attribute Selectors

public members, Property and Method Scope

push array method (JavaScript), Assigning element values,
push and pop-push and pop

putting it all together (see social networking site)

PuTTY for remote work login, Logging In

Q

querying a database (MySQL), Querying a MySQL Database-
GROUP BY

AS keyword, Using AS

DELETE a row, DELETE

GROUP BY keywords, GROUP BY

LIMIT keyword, LIMIT

MATCH…AGAINST, MATCH…AGAINST-MATCH…
AGAINST in Boolean mode

Boolean mode, MATCH…AGAINST in Boolean
mode

ORDER BY keywords, ORDER BY

phpMyAdmin tool for MySQL, Accessing MySQL via
phpMyAdmin

scripting, Retrieving Data, Performing Additional
Queries

SELECT, SELECT

SELECT COUNT, SELECT COUNT

SELECT DISTINCT, SELECT DISTINCT

UPDATE…SET, UPDATE…SET

WHERE keyword, WHERE

LIKE keyword, WHERE

logical operators, Using Logical Operators

question mark (?) operator (PHP), The Difference Between the
echo and print Commands, The ? (or Ternary) Operator

question mark (?) placeholder (MySQL), Using Placeholders-
Using Placeholders

question mark (?) ternary operator

JavaScript, Operators, The ? Operator

PHP, Operators

QUIT (\q) command (MySQL), MySQL Commands

quotation mark, double (“)

JavaScript escape character, Escape Characters

PHP

printf parameter string, Using printf

variable value in string, String types

quotation mark, single (‘)

JavaScript escape character, Escape Characters

PHP

literal strings, String types

printf argument string, Using printf

quote method (PDO), The $_POST Array, Steps You Can
Take-Steps You Can Take

R

radio buttons in forms (HTML), Radio buttons

range and number in forms (HTML), The number and range
input types

React JavaScript library

about, The Benefits of PHP, MySQL, JavaScript, CSS,
and HTML, Introduction to React

library not framework, What Is the Point of React
Anyway?

open source, Accessing the React Files

purpose, What Is the Point of React Anyway?

adding to web page, Accessing the React Files

Babel JSX extension, Accessing the React Files

development files on GitHub, Accessing the React
Files

asynchronous communication framework, Using
Frameworks for Asynchronous Communication,
Introduction to React

components, The Benefits of PHP, MySQL, JavaScript,
CSS, and HTML

controlled components, Handling Forms

documentation online, Including babel.js

events, Events in React-Events in React

names in camelCase, Events in React

first project, Our First React Project-React State and Life
Cycle

code using a class versus a function, The Differences
Between Using a Class and a Function

code using class and function, Using Both a Class
and a Function

code using class instead of function, Using a Class
Instead of a Function

component description, Props and Components

component mounting, React State and Life Cycle

component name capitalization, Our First React
Project

component unmounting, React State and Life Cycle

props, Props and Components

pure versus impure code, Pure and Impure Code: A
Golden Rule

forms, Handling Forms-Using select

controlled components, Handling Forms

select, Using select

text area, Using textarea

text input, Using Text Input-Using Text Input

JSX extension

closing character, And Then There’s HTML5

events in React, Events in React

inline conditional statements, Inline JSX Conditional
Statements

multiple lines, Events in React

life-cycle, React State and Life Cycle-React State and
Life Cycle

lists and keys, Using Lists and Keys

unique keys, Unique Keys

React Native, React Native

tutorial online, React Native

website, React Native

react.dev web page, React Native

state, React State and Life Cycle-React State and Life
Cycle

setState function, React State and Life Cycle

reading a cookie, Accessing a Cookie

reading from files (PHP), Reading from Files

file pointer, Updating Files

reading an entire file, Reading an Entire File

REAL or DOUBLE data type (MySQL), Numeric data types

records

database definition, MySQL Basics

deleting a record in PHP, Running the Program

in a script, Deleting Data

row of table as record, Key Database Terms

redirect (>), Using mysqldump

mysqldump redirected to a file, Creating a Backup File

regular expressions

* metacharacter, Matching Through Metacharacters

+ metacharacter, Matching Through Metacharacters

- for a range, Indicating a Range

. wildcard, Wildcard Matching

/g for global matching, General Modifiers

/i for case-insensitivity, General Modifiers

/m for multiline mode, General Modifiers

both JavaScript and PHP, Regular Expressions

character classes, Character Classes

negation, Negation

examples, Some More Complicated Examples-Some
More Complicated Examples

general modifiers, General Modifiers

grouping with parentheses, Grouping Through
Parentheses

HTML should not be parsed with, Wildcard Matching

online post explaining, Wildcard Matching

what to use for parsing, Wildcard Matching

HTML tag match expressions, Wildcard Matching

JavaScript, Using Regular Expressions in JavaScript

metacharacters for matching, Matching Through
Metacharacters

summary of, Summary of Metacharacters

negative lookahead documentation online, Negation

\d indicating digit, Indicating a Range

\W indicating nonword character, Summary of
Metacharacters

\w indicating word character, Summary of
Metacharacters

^ for beginning of the line, Some More Complicated
Examples

^ for character class negation, Negation

relational operators

JavaScript, Relational Operators-Logical operators

PHP, Relational Operators

relationships among databases, Relationships-Many-to-Many

many-to-many, Many-to-Many

one-to-many, One-to-Many

one-to-one, One-to-One

privacy and, Databases and Privacy

remote server (see working remotely)

removeChild function (JavaScript), Adding New Elements,
Removing Elements

RENAME command (MySQL), MySQL Commands

rename function (PHP), Moving a File

renaming a column (MySQL), Renaming a column

renaming a table (MySQL), Renaming a table

request/response process, The Request/Response Procedure-
The Request/Response Procedure

cookies, Using Cookies in PHP

require directive (PHP), Using require and require_once

required attribute in forms (HTML), The required attribute

require_once directive (PHP), Using require and require_once,
Connecting to a MySQL Database

reset array function (PHP), reset

resources online

AMPPS Windows installation documentation, Installing
AMPPS on Windows, Alternative WAMPs

Apache secure web server documentation, Session
Security

book supplemental material, Using Code Examples

CSS selectors, Attribute Selectors

book web page, How to Contact Us

book’s examples, This Book’s Examples

byID and style functions, Including the Functions

database login.php, Creating a Login File

input validation via JavaScript, The validate.html
Document (Part 1)

input validation via PHP, Redisplaying a Form After
PHP Validation

React, React Native

social networking site, Online Repository

users table and accounts in PHP, An Example
Program

Chrome Developers Blog, Advanced CSS

CSS

Can I Use… website, Advanced CSS, Using the auto
Value

development information, Advanced CSS

snapshot of stable modules, Advanced CSS

DOMPurify library, Sanitizing Input

Fetch standard, The Fetch API

FileZilla Wiki, Transferring Files

Google Fonts Website, Google Web Fonts

hash storage documentation, Using password_hash

HTML

autocomplete attribute in forms, The autocomplete
attribute

not parsing with regular expressions, Wildcard
Matching

JavaScript

precedence documentation, Operator Precedence

variable typing documentation, Variable Typing

MySQL

GRANT command documentation, Creating users

REVOKE command documentation, Creating users

scalability benchmarks, Introduction to MySQL

Node.js

Linux download site, Installing Node.js on Linux

macOS download site, Installing Node.js on macOS

Node.js website, Further Information

npm documentation, Installing Modules with npm

npm website, Installing Modules with npm

Windows download site, Installing Node.js on
Windows

PDO fetch data styles, Fetching a Row While Specifying
the Style

PHP documentation

date function, Date and Time Functions

phpMyAdmin, Accessing MySQL via phpMyAdmin

variable type conversion, Variable Typing

React

Babel JSX extension, Including babel.js

development files, Accessing the React Files

documentation, Including babel.js

React Native tutorial, React Native

React Native website, React Native

react.dev web page, React Native

regular expression negative lookahead documentation,
Negation

XSS prevention article by OWASP, Sanitizing Input

rest parameter (…) syntax (JavaScript), The rest parameter

example fixNames function, Returning a Value

restoring from a backup file, Restoring from a Backup File

test restoring periodically, Planning Your Backups

return (\r) character, Escaping characters, Escape Characters

reverse array method (JavaScript), Using reverse

REVOKE command (MySQL), Creating users

documentation online, Creating users

RGB colors (CSS), RGB Colors

RGBA colors (CSS), RGBA Colors

ROLLBACK a transaction (MySQL), Using ROLLBACK

root login at mysql prompt, Windows users

row of table, Key Database Terms

DELETE command, DELETE

LIMIT keyword, LIMIT

unique via AUTO_INCREMENT attribute

as primary key, Primary keys

unique via AUTO_INCREMENT attribute, The
AUTO_INCREMENT attribute-The
AUTO_INCREMENT attribute

as primary key, Primary Keys: The Keys to
Relational Databases

WHERE keyword, WHERE

S

scalability

MySQL, Introduction to MySQL

normalization and, When Not to Use Normalization

Node.js, Introduction to Node.js

scope of object members (PHP), Property and Method Scope

scope of variables

JavaScript, Global Variables-Local Variables, Using const

var keyword, Using let

PHP, Variable Scope-Superglobals and security

scope resolution (::) operator (PHP), Static Methods, Static
Properties

screen object for user display information, Other Properties

scripting

asynchronous communication

first asynchronous program GET method, Using
GET Instead of POST-Using GET Instead of POST

first asynchronous program POST method, Your
First Asynchronous Program-The Server Half of the
Asynchronous Process

JSON requests, Sending JSON Requests-Sending
JSON Requests

XMLHttpRequest object, Using XMLHttpRequest

commands commonly used in MySQL

adding data to a table, Adding Data

AUTO_INCREMENT for ID, Using
AUTO_INCREMENT-Using insert IDs

creating a table, Creating a Table

deleting data, Deleting Data

describing a table, Describing a Table

dropping a table, Dropping a Table

retrieving data, Retrieving Data, Performing
Additional Queries

subquery, Performing Additional Queries

updating data, Updating Data

CSS

hover, transition, transformation, Shorthand Syntax

multiple column layout, Multicolumn Layout

example of PHP integrating with forms, An Example
Program-An Example Program

Google font loaded, Google Web Fonts

HTTP authentication, An Example Program-An Example
Program

JavaScript

accessing CSS properties, Some Common Properties

adding new elements to DOM, Adding New
Elements

animation via time-based event, Using Time-Based
Events for Animation-Using Time-Based Events for
Animation

clock created via setInterval function, Using
setInterval

multiple column layout via CSS, Multicolumn Layout

onerror event for error handling, Using onerror

PHP querying MySQL database, Querying a MySQL
Database with PHP-Preventing JavaScript Injection into
HTML

practical example, A Practical Example-A Practical
Example

validation of user input

JavaScript, The validate.html Document (Part 1)-
Using a separate JavaScript file

PHP, Redisplaying a Form After PHP Validation-
Redisplaying a Form After PHP Validation

security

AMPPS password in Windows installation, Testing the
Installation

development server for, Setting Up a Development
Server

directory traversal attack, Building a Functioning Web
Server

“goto fail” bug in SSL, The if Statement

hacking prevention, Preventing Hacking Attempts-
Preventing JavaScript Injection into HTML

about the risks, Preventing Hacking Attempts

article by OWASP online, Sanitizing Input

cross-site scripting (XSS) attack, Fetching a Result

JavaScript injection into HTML, Preventing
JavaScript Injection into HTML

PDO quote method, Steps You Can Take-Steps You
Can Take

placeholders in MySQL, Using Placeholders-Using
Placeholders

sanitizing input, Sanitizing Input

SQL injection attack, Preventing Hacking Attempts

steps to take, Steps You Can Take-Steps You Can
Take

HTML

cross-site scripting (XSS) attack, Fetching a Result,
Preventing JavaScript Injection into HTML

form validation, Validation-Validation

hidden fields in forms, Hidden fields

htmlspecialchars protection, System Calls, Fetching
a Result, Displaying the Form

sanitizing input, Sanitizing Input

MySQL

default user and password risks, Preventing Hacking
Attempts

error message contents, Connecting to a MySQL
Database

root access, Creating users

Node.js, Building a Functioning Web Server

password_hash function, Using password_hash

example program, An Example Program-An
Example Program

password_verify function, Using password_verify

example program, An Example Program-An
Example Program

social networking site, login.php-login.php

path traversal attack, Building a Functioning Web Server

PDO quote method, The $_POST Array, Steps You Can
Take-Steps You Can Take

phpinfo function, PHP Functions

privacy

databases and, Databases and Privacy

history object in web browsers, Using the DOM

third-party site use, Google Web Fonts

sessions, Session Security-Using a shared server

about, Session Security

cookie-only sessions, Forcing cookie-only sessions

IP address to prevent hijacking, Preventing session
hijacking

session fixation, Preventing session fixation

shared server, Using a shared server

SQL injection attack, Preventing Hacking Attempts

superglobal variables and, Superglobals and security

htmlentities function for sanitizing, Superglobals
and security

validated input still insecure, Validating User Input with
JavaScript

web server performing, Using JavaScript

XSS (cross-site scripting) attack, Fetching a Result,
Preventing JavaScript Injection into HTML

article by OWASP online, Sanitizing Input

innerHTML property risks, Your First Asynchronous
Program

sanitizing input, Sanitizing Input

SELECT command (MySQL), SELECT

checking data added to table, Adding data to a table

pager less; command to page output, SELECT

SELECT COUNT, SELECT COUNT

SELECT DISTINCT, SELECT DISTINCT

selectors (CSS), Attribute Selectors

self keyword (PHP), Static Properties

referencing class constants, Declaring Constants

semicolon (;)

JavaScript, JavaScript and HTML Text, Semicolons

MySQL, The semicolon

none for PHP accessing MySQL, Building and
Executing a Query

\c after a semicolon, Canceling a command

PHP, Semicolons

for loops, for Loops

server setup (see development server setup)

server-side scripting, The Benefits of PHP, MySQL,
JavaScript, CSS, and HTML

Google V8 JavaScript engine for, Node.js: An Alternative
to Apache

servers and clients, HTTP and HTML: Berners-Lee’s Basics

(see also web servers)

PHP, MySQL, JavaScript, CSS, HTML, The Benefits of
PHP, MySQL, JavaScript, CSS, and HTML

request/response process, The Request/Response
Procedure-The Request/Response Procedure

cookies, Using Cookies in PHP

working remotely, Working Remotely

logging in, Logging In

transferring files, Transferring Files

sessions, Using Sessions-Using a shared server

about, Using Sessions

ending a session, Ending a Session

security, Session Security-Using a shared server

about, Session Security

cookie-only sessions, Forcing cookie-only sessions

IP address to prevent hijacking, Preventing session
hijacking

session fixation, Preventing session fixation

shared server, Using a shared server

setting a timeout, Setting a Timeout

starting a session, Starting a Session-Starting a Session

session_destroy function (PHP), Ending a Session

session_get_cookie_params function (PHP), Ending a Session

session_start function (PHP), Starting a Session-Starting a
Session

SET command (MySQL), Using Placeholders

placeholder variables, Using Placeholders

setcookie function (PHP), Setting a Cookie

deleting a cookie, Destroying a Cookie

setInterval function (JavaScript), Using setInterval-Canceling
an interval

canceling an interval, Canceling an interval

clock created via, Using setInterval

setState function (React), React State and Life Cycle

class versus function, The Differences Between Using a
Class and a Function

setTimeout function (JavaScript), Using setTimeout

canceling a timeout, Canceling a timeout

example of use, Adding New Elements

strings not passed to, Passing an arrow function

setting a cookie, Setting a Cookie

SFTP (SSH/Secure File Transfer Protocol), Transferring Files

not FTP, Transferring Files

programs supporting, Transferring Files

short-circuit evaluation, Logical operators

SHOW command (MySQL), MySQL Commands

SHOW databases

Linux command line startup, Linux users

macOS command line startup, macOS users

semicolon, The semicolon

Windows command line startup, Windows users

SHOW tables to check table deletion, Deleting a table

shuffle array function (PHP), shuffle

signed versus unsigned numbers (MySQL), Numeric data
types

UNSIGNED qualifier, Numeric data types

single quote mark (see quotation mark, single (‘))

SMALLINT data type (MySQL), Numeric data types

social networking site, Bringing It All Together-javascript.js

about, Bringing It All Together

checkuser.php, checkuser.php

styles.css marking if available, checkuser.php

CREATE DATABASE, functions.php

CREATE USER, functions.php

designing the app, Designing a Social Networking App

friends.php, friends.php

intersection of following and followed, friends.php

functions.php, functions.php-functions.php

GitHub for code, Online Repository

header.php, header.php

styles.css, header.php

index.php, index.php

javascript.js, javascript.js

login.php, login.php

form for username and password, login.php

logout.php, logout.php

members.php, members.php-Listing All Members

adding and dropping friends, Adding and Dropping
Friends

listing all members, Listing All Members

viewing a user profile, Viewing a User’s Profile

messages.php, messages.php-messages.php

profile.php, profile.php-Displaying the Current Profile

adding a profile image, Adding a Profile Image

adding “About Me”, Adding the “About Me” Text

displaying current profile, Displaying the Current
Profile

form for photo and text, profile.php

processing the profile image, Processing the Image

setup.php, setup.php

logging in, Logging In

password as asterisks, Logging In

signup.php, signup.php-Logging In

asynchronous call destination, signup.php

form for username and password, signup.php

username availability check, signup.php

styles.css, styles.css

header.php, header.php

marking if username available, checkuser.php

some array method (JavaScript), some and every

sort array function (PHP), sort

sort array method (JavaScript), sort

sorting queries via ORDER BY (MySQL), ORDER BY

SOURCE command (MySQL), MySQL Commands

split function (JavaScript), Explicit Casting

spread (…) syntax (JavaScript), concat

sprintf function (PHP), Using sprintf

SQL (Structured Query Language), MySQL Basics

(see also MySQL)

SQL injection attack, Preventing Hacking Attempts

square brackets ([])

arrays

JavaScript, Arrays-Multidimensional Arrays

PHP, Numerically Indexed Arrays,
Multidimensional Arrays, Multidimensional Arrays

regular expressions

character classes, Character Classes

negation of a character class, Negation

SSH

preinstalled in Windows and macOS, Logging In

working remotely

macOS logging in via Terminal, Logging In

MySQL, Working Remotely

Windows logging in via PuTTY, Logging In

statements

expressions building, Literals and Variables

flow control as, Literals and Variables

static methods

JavaScript, Static Methods and Properties

PHP, Static Methods

static properties

JavaScript, Static Methods and Properties

PHP, Static Properties

static variables (PHP), Static variables, Recap of Variable
Scope

STATUS (\s) command (MySQL), MySQL Commands

step attribute in forms (HTML), The step attribute

stopwords, Creating a FULLTEXT index, MATCH…
AGAINST, MATCH…AGAINST in Boolean mode

storage engines (see InnoDB storage engine; MyISAM storage
engine)

strict equality (===) operator

JavaScript, Comparison Operators, Equality operators

PHP, Comparison operators, Equality operators-Equality
operators

validating username and password, HTTP
Authentication

String function (JavaScript), Explicit Casting

string functions

JavaScript

example returning one string from many, Returning
a Value

substring, Returning a Value

toLowerCase, Returning a Value

toUpperCase, Returning a Value

MySQL documentation online, MySQL Functions

PHP

sprintf, Using sprintf

strrev, PHP Functions

strtolower, Returning a Value

strtoupper, PHP Functions

str_repeat, PHP Functions

ucfirst, Returning a Value

strings

CSS selectors, Attribute Selectors

matching part of a string, Attribute Selectors-The *=
Operator

supplemental material online, Attribute Selectors

JavaScript

+= assignment operator, Assignment Operators

array to strings via join method, join

concatenation, String Concatenation

escaping characters, Escape Characters

string variables, String Variables

MySQL

canceling input in midst of, Canceling a command

LIKE keyword in queries, WHERE

LIKE keyword wildcard %, WHERE

PHP

concatenation, String concatenation

concatenation assignment operator, Assignment
operators, String concatenation

double quote mark for variable value, String types

escaping characters, Escaping characters

exploding into an array, explode

multiline strings, Multiline Strings-Using a nowdoc

multiline strings in browsers, Using a nowdoc

single quote mark literal strings, String types

special characters tab, newline, return, Escaping
characters

string variables, String variables-String variables

strip_tags (HTML) and XSS attacks, Sanitizing Input

Structured Query Language (SQL), MySQL Basics

(see also MySQL)

subclass in inheritance, Terminology

final methods, Final methods

parent constructors called, Subclass constructors

submit button in forms (HTML), The submit button

substring method (JavaScript), Returning a Value

subtraction (-) operator

JavaScript, Arithmetic Operators

PHP, Arithmetic operators

subtraction and assignment (-=) operator

JavaScript, Assignment Operators, Incrementing,
Decrementing, and Shorthand Assignment

PHP, Assignment operators, Variable Assignment

superclass in inheritance, Terminology

final methods, Final methods

superglobal variables (PHP), Superglobal variables

constants versus, Superglobal variables

security and, Superglobals and security

htmlentities function for sanitizing, Superglobals
and security

switch statement

JavaScript, The switch Statement-Default action

break command, Breaking out

default action, Default action

PHP, The switch Statement-Alternative syntax

alternative syntax, Alternative syntax

break command, The switch Statement

default action, Default action

syntax errors caught by onerror event, Using try…catch

system calls (PHP), System Calls-System Calls

cautions, System Calls

escapeshellcmd function, System Calls

T

tab (\t) character, Escaping characters, Escape Characters

tables

basics, MySQL Basics

definition of table, Key Database Terms

names in lowercase, MySQL Commands

data dumped into CSV file, Dumping Data in CSV
Format

MySQL

adding a FULLTEXT index, Creating a FULLTEXT
index

adding a new column, Adding a new column

adding a new column for primary key, Primary keys

adding data, Adding data to a table, Joining Tables

adding data in a script, Adding Data

changing column data type, Changing the data type
of a column

creating a table, Creating a table-Creating a table

creating a table in a script, Creating a Table,
setup.php

creating a table with a numeric field, Numeric data
types

creating a table with a primary key, Primary keys

creating a table with an auto-incrementing column,
The AUTO_INCREMENT attribute

creating a table with indexes, Adding indexes when
creating tables

database design, Database Design

DELETE a row, DELETE

deleting a table, Deleting a table

deleting a table in a script, Dropping a Table

DESCRIBE command, Creating a table, The
AUTO_INCREMENT attribute, Adding a new
column

DESCRIBE command in a script, Describing a
Table

FULLTEXT indexes and, Creating a FULLTEXT
index

joining tables, Joining Tables-Using AS

locking tables, MySQL Commands

locking tables before backup, Using mysqldump

name aliases via AS keyword, Using AS

normalization, Normalization-When Not to Use
Normalization

removing a column, The AUTO_INCREMENT
attribute, Removing a column

renaming a column, Renaming a column

renaming a table, Renaming a table

rows unique via AUTO_INCREMENT, The
AUTO_INCREMENT attribute-The
AUTO_INCREMENT attribute, Primary keys

partitions, Using EXPLAIN

tablets

React Native, React Native

screen space information, Other Properties

Telnet protocol versus SSH, Logging In

Terminal for macOS SSH, Logging In

ternary operator, Operators, Operators, The ? Operator

testing

AMPPS installation

macOS, Installing AMPPS on macOS

Windows, Testing the Installation-Testing the
Installation

development server for, Setting Up a Development
Server

restore of backup tested periodically, Planning Your
Backups

web browsers for, Setting Up a Development Server

text areas in forms (HTML), Text areas

text boxes in forms (HTML), Text boxes

TEXT data types (MySQL), The TEXT data types

VARCHAR versus, The TEXT data types

text effects (CSS), Text Effects-The word-wrap Property

text-overflow property, The text-overflow Property

text-shadow property, The text-shadow Property

word-wrap property, The word-wrap Property

textDecoration property (JavaScript), The by Function

third-party cookies, Using Cookies in PHP

Google phasing out, Using Sessions

this keyword (JavaScript), Creating an Instance, The this
Keyword

class constructor and instance, Declaring a Class

example of use, Inline JavaScript

$this variable (PHP), Writing Methods

time and date functions (MySQL) documentation online,
MySQL Functions

time and date functions (PHP), Date and Time Functions-
Using checkdate

2038 as end of time, Date and Time Functions

date constants, Date Constants

validity check via checkdate, Using checkdate

time and date pickers in forms (HTML), Date and time pickers

TIME data type (MySQL), DATE and TIME types

time function (PHP), Date and Time Functions

time-based events, Time-based Events-Using Time-Based
Events for Animation

about, Time-based Events

animation, Using Time-Based Events for Animation-
Using Time-Based Events for Animation

setInterval function, Using setInterval-Canceling an
interval

setTimeout function, Using setTimeout

timeout for session, Setting a Timeout

TIMESTAMP data type (MySQL), DATE and TIME types

TINYBLOB data type (MySQL), The BLOB data types

TINYINT data type (MySQL), Numeric data types

TINYTEXT data type (MySQL), The TEXT data types

TLS (Transport Layer Security), Session Security

transactions, Transactions-Using EXPLAIN

about, Transactions

BEGIN, Using START TRANSACTION

COMMIT, Using COMMIT

EXPLAIN, Using EXPLAIN

ROLLBACK, Using ROLLBACK

START TRANSACTION, Using START
TRANSACTION

transaction storage engines, Transaction Storage Engines

transformations (CSS), Transformations-Transformations

script with transitions, Shorthand Syntax

transitions (CSS), Transitions

delay, Transition Delay

duration, Transition Duration

properties, Properties to Transition

returning to initial state, Shorthand Syntax

script with transformation, Shorthand Syntax

shorthand syntax, Shorthand Syntax

timing, Transition Timing

Transport Layer Security (TLS), Session Security

triggers for automatic changes (MySQL), When Not to Use
Normalization

troubleshooting (see debugging)

TRUE with value of 1 (PHP), TRUE or FALSE?

true with value of “true” (JavaScript), Expressions

TrueType (.ttf) fonts, Web Fonts

TRUNCATE command (MySQL), MySQL Commands

truthy and falsy values (JavaScript), Truthy and falsy values

try…catch commands

JavaScript, Using try…catch

syntax errors need onerror, Using try…catch

PHP, Connecting to a MySQL Database

.ttf (TrueType) fonts, Web Fonts

type selectors (CSS), Attribute Selectors

TypeError (PHP), Variable Typing

typeof operator (JavaScript), Variable Typing

testing variable scope, Local Variables

typeof null and typeof [], Variable Typing

TypeScript as JavaScript with variable types, Variable Typing

U

unary operators, Operators, Operators

Undefined variable error (PHP), Local variables

Unicode (\uXXXX) escape character, Escape Characters

universal (*) selector (CSS), Attribute Selectors

Universally Unique Identifiers (UUIDs), Primary Keys: The
Keys to Relational Databases

Unix epoch for timestamps, Date and Time Functions

unlink function (PHP), Deleting a File

UNLOCK command (MySQL), MySQL Commands

unsigned versus signed numbers (MySQL), Numeric data
types

UNSIGNED qualifier, Numeric data types

UPDATE command (MySQL), MySQL Commands

in a script, Updating Data

UPDATE…SET command (MySQL), UPDATE…SET

updating files (PHP), Updating Files

uploading a file (PHP), Uploading Files-Validation

$_FILES, Using $_FILES

internet media content types, Using $_FILES

image uploader, Uploading Files-Validation

URL origin, Origin

URL reference in JavaScript, The Document Object Model

replacing currently loaded with specified URL, Using the
DOM

USE command (MySQL), MySQL Commands, Creating a
database

user-agent string, Preventing session hijacking

username availability check, Bringing It All Together-
Bringing It All Together, signup.php, checkuser.php

users created, Creating users-Creating users

social networking site, functions.php

UUIDs (Universally Unique Identifiers), Primary Keys: The
Keys to Relational Databases

V

validation

about security, Validating User Input with JavaScript

forms in HTML, Validation-Validation

user input using JavaScript, Validating User Input with
JavaScript-Using a separate JavaScript file

about, Validating User Input with JavaScript

setting up form and events, The validate.html
Document (Part 1)-The validate.html Document
(Part 1)

validate.html online, The validate.html Document
(Part 1)

validation, The validate.html Document (Part 2)-
Using a separate JavaScript file

user input via PHP, Redisplaying a Form After PHP
Validation-Redisplaying a Form After PHP Validation

var keyword (JavaScript)

global variables, Global Variables

legacy replaced with let, Using let

local variables, Local Variables

VARBINARY versus BINARY data types (MySQL), The
BINARY data type

VARCHAR data type (MySQL), Data Types

CHAR versus, Data Types

TEXT versus, The TEXT data types

variables

in expressions

JavaScript, Literals and Variables

PHP, Literals and Variables

global variables

JavaScript, Global Variables

PHP, Global variables, Returning Global Variables

JavaScript, Variables-Arrays

about, Variables

arrays, Arrays

explicit casting, Explicit Casting

global variables, Global Variables

let keyword, Using let

local variables, Local Variables

loosely typed, Variable Typing

naming rules, Variables

numeric variables, Numeric Variables

objects versus, JavaScript Objects

string variables, String Variables

TypeScript for types, Variable Typing

variable typing, Variable Typing-Variable Typing

variable typing documentation online, Variable
Typing

local variables

JavaScript, Local Variables

PHP, Local variables-Local variables, Recap of
Variable Scope

PHP, The $ symbol-Variable-naming rules

about, Variables

arrays, Arrays-Two-dimensional arrays

arrays, two-dimensional, Two-dimensional arrays-
Two-dimensional arrays

dollar ($) symbol, The $ symbol

explicit casting, Implicit and Explicit Casting

expressions, Literals and Variables

implicit casting, Implicit and Explicit Casting

incrementing and decrementing, Variable
Assignment-Variable incrementing and
decrementing

loosely typed, Variable Typing, Equality operators,
Implicit and Explicit Casting

naming rules, Variable-naming rules

numeric, Numeric variables

scope, Variable Scope-Superglobals and security,
Recap of Variable Scope

string, String variables-String variables

$this, Writing Methods

variable typing, Variable Typing

placeholder variables, Using Placeholders-Using
Placeholders

static variables in PHP, Static variables, Recap of
Variable Scope

string concatenation, String concatenation

superglobal variables in PHP, Superglobal variables

version of PHP to use, PHP Functions and Objects

checking if a function exists, PHP Version Compatibility

Visual C++ Redistributable (Microsoft), Installing AMPPS on
Windows

Visual Studio Code (VSC), Using a Code Editor

Vue, Introduction to React

W

WAMP (Windows, Apache, MySQL, PHP), What Is a WAMP,
MAMP, or LAMP?

installing AMPPS on Windows, Installing AMPPS on
Windows-Installing AMPPS on Windows

alternative WAMPs, Alternative WAMPs

AMPPS documentation, Installing AMPPS on
Windows, Alternative WAMPs

configuration, Testing the Installation

document root described, Accessing the Document
Root (Windows)

document root Hello World, Accessing the
Document Root (Windows)

document root viewed, Testing the Installation

Microsoft Visual C++ Redistributable, Installing
AMPPS on Windows

PHP version, Installing AMPPS on Windows

serving pages from document root versus filesystem,
Accessing the Document Root (Windows)

testing the installation, Testing the Installation-
Testing the Installation

MySQL

command line interface startup, Windows users

table names case-insensitive, MySQL Commands

WAMPServer, Alternative WAMPs

web browsers

<pre> and </pre> tags, Declaring a Class,
Multidimensional Arrays

autofocus, The autofocus attribute

console

JavaScript errors displayed, Debugging JavaScript
Errors

opening, Debugging JavaScript Errors

Safari Develop menu enabled, Debugging JavaScript
Errors

cookies

disabled, Using Cookies in PHP, Using Sessions

editing, Using Cookies in PHP

reading, Accessing a Cookie

request/response process, Using Cookies in PHP

CSS

Can I Use… website, Advanced CSS, Using the auto
Value

development, Advanced CSS

flexbox editor, Flexbox

font specification, Web Fonts

grid editor, Grid Container

support of, Advanced CSS

events normalized by React, Events in React

Fetch API, The Fetch API

(see also Fetch API (JavaScript))

htmlspecialchars protection, System Calls, Fetching a
Result, Displaying the Form, HTTP Authentication

JavaScript running within, Exploring JavaScript

errors displayed in browser console, Debugging
JavaScript Errors

history object, Using the DOM

JavaScript engine required, JavaScript and HTML
Text

running outside of browser via Node.js, Introduction
to Node.js

multiline string output, Using a nowdoc

request/response process, The Request/Response
Procedure-The Request/Response Procedure

cookies, Using Cookies in PHP

Safari browser Develop menu enabled, Debugging
JavaScript Errors

testing development work, Setting Up a Development
Server

uploading via multipart/form-data encoding, Uploading
Files

user-agent string, Preventing session hijacking

web design (see dynamic web design)

web fonts (CSS), Web Fonts

Google web fonts, Google Web Fonts

privacy information online, Google Web Fonts

website, Google Web Fonts

specifying for browser, Web Fonts

Web Hypertext Application Technology Working Group
(WHATWG), And Then There’s HTML5

web page for book, How to Contact Us

web servers

Apache, The Apache Web Server

(see also Apache web server; Node.js)

dynamic output via PHP, Using PHP, Introduction to
PHP

(see also PHP)

file_get_contents function in PHP, Reading an Entire File

HTTP authentication, HTTP Authentication-An Example
Program

example program, An Example Program-An
Example Program

hash storage documentation online, Using
password_hash

htmlspecialchars function, HTTP Authentication

installed on server, HTTP Authentication

size of storage for hashes, Using password_hash

storing usernames and passwords, Storing
Usernames and Passwords-Using password_verify

validating username and password, HTTP
Authentication

verifying password against hash, Using
password_verify, login.php

Node.js alternative to Apache, Node.js: An Alternative to
Apache

building a Node.js web server, Building a
Functioning Web Server-Building a Functioning
Web Server

building an Apache web server (see development
server setup)

port number, String variables

request/response process, The Request/Response
Procedure-The Request/Response Procedure

cookies, Using Cookies in PHP

security via, Using JavaScript

serving pages from document root versus filesystem,
Accessing the Document Root (Windows), Installing
AMPPS on macOS

sessions, Using Sessions-Using a shared server

about, Using Sessions

ending a session, Ending a Session

security, Session Security-Using a shared server

setting a timeout, Setting a Timeout

starting a session, Starting a Session-Starting a
Session

uploading a file, Uploading Files-Validation

working remotely, Working Remotely

logging in, Logging In

transferring files, Transferring Files

WHATWG (Web Hypertext Application Technology Working
Group), And Then There’s HTML5

WHERE keyword (MySQL), WHERE

deleting a row, DELETE

LIKE keyword, WHERE

% before or after text, WHERE

logical operators, Using Logical Operators

while loops

JavaScript, while Loops

PHP, while Loops-while Loops

width attribute in forms (HTML), The width and height
attributes

wildcard (.) in regular expressions, Wildcard Matching

window object (JavaScript)

centering in-browser alerts or dialogs, Other Properties

properties, Other Properties

documentation online, Other Properties

Windows installation of Node.js, Installing Node.js on
Windows-Installing Node.js on Windows

Windows PowerShell

MySQL command line, Windows users

MySQL errors, Creating a Backup File

Windows Subsystem for Linux (WSL) and Node.js, Installing
Node.js on Windows

Windows, Apache, MySQL, PHP (WAMP), What Is a WAMP,
MAMP, or LAMP?

installing AMPPS on Windows, Installing AMPPS on
Windows-Installing AMPPS on Windows

alternative WAMPs, Alternative WAMPs

AMPPS documentation, Installing AMPPS on
Windows, Alternative WAMPs

configuration, Testing the Installation

document root described, Accessing the Document
Root (Windows)

document root Hello World, Accessing the
Document Root (Windows)

document root viewed, Testing the Installation

Microsoft Visual C++ Redistributable, Installing
AMPPS on Windows

PHP version, Installing AMPPS on Windows

serving pages from document root versus filesystem,
Accessing the Document Root (Windows)

testing the installation, Testing the Installation-
Testing the Installation

MySQL

command line interface startup, Windows users

table names case-insensitive, MySQL Commands

WinSCP for SFTP, Transferring Files

word character (\w) in regular expressions, Summary of
Metacharacters

nonword character (\W), Summary of Metacharacters

word-wrap property (CSS), The word-wrap Property

working remotely

about, Working Remotely

code editors, Using a Code Editor

logging in, Logging In

MySQL command line interface startup, MySQL on a
remote server

transferring files, Transferring Files

World Wide Web

history, Introduction to Dynamic Web Content

Web 1.0, Introduction to Dynamic Web Content

Web 1.1, The Benefits of PHP, MySQL, JavaScript, CSS,
and HTML

Web 2.0, And Then There’s HTML5

writing to files (PHP)

file pointer, Updating Files

fwrite function, Creating a File

locking files for multiple accesses, Locking Files for
Multiple Accesses

updating a file, Updating Files

WSL (Windows Subsystem for Linux) and Node.js, Installing
Node.js on Windows

X

XAMPP, Alternative WAMPs

XHR (XMLHttpRequest) object (JavaScript), Using
XMLHttpRequest

documentation online, Using XMLHttpRequest

XML in JavaScript via Babel JSX extension, Accessing the
React Files

XMLHttpRequest (XHR) object (JavaScript), Using
XMLHttpRequest

documentation online, Using XMLHttpRequest

xor (exclusive or) logical operator (PHP), Logical operators,
Operator precedence, Logical operators-Logical operators

XSS (cross-site scripting) attack, Fetching a Result, Preventing
JavaScript Injection into HTML

article by OWASP online, Sanitizing Input

innerHTML property risks, Your First Asynchronous
Program

sanitizing input, Sanitizing Input

Y

Y2K38 bug, Date and Time Functions

YEAR data type (MySQL), Data Types, DATE and TIME
types

CHAR(4) instead, Data Types

About the Author
Robin Nixon is a broadcaster and author who has over 40
years of experience with writing software, developing
websites and apps, and managing teams of developers. He also
has an extensive history of writing about computers and
technology, with a portfolio of over 500 published magazine
articles and over 40 books, many of which have been
translated into other languages.

Robin started his computing career in the Cheshire homes for
disabled people, where he was responsible for setting up
computer rooms in a number of residential homes, and for
evaluating and tailoring hardware and software so that
disabled people could use the new technology, sometimes by
means of only a single switch operated by mouth or finger.
Robin’s first computer was a Tandy TRS 80 Model 1 with a
massive 4KB of RAM!

Robin eventually went on to work for some of the UK’s top-
selling IT magazine publishers, where he held several roles
including editorial, promotions, and cover disc editing.

With the dawn of the internet in the 1990s, Robin helped
spearhead many new web developments such as the first
internet radio station, one of the first webmail services, the
first fully interactive chat service (before the development of
Ajax), and the first widespread use of pop-up window
technology.

Colophon
The animals on the cover of Learning PHP, MySQL &
JavaScript are sugar gliders (Petaurus breviceps). Sugar
gliders are small, gray-furred creatures that grow to an adult
length of 6 to 7.5 inches. Their tails, distinguished by a black
tip, are usually as long as their bodies. Membranes extend
between their wrists and ankles and provide an aerodynamic
surface that helps them glide between trees.

Sugar gliders are native to Australia and Tasmania. They
prefer to live in the hollow parts of eucalyptus and other large
trees with several other adult sugar gliders and their own
children.

Though sugar gliders reside in groups and defend their
territory together, they don’t always live in harmony. One male
will assert his dominance by marking the group’s territory with
his saliva and marking group members with a distinctive scent
produced from his forehead and chest glands. This ensures that
members of the group know when an outsider approaches.

Sugar gliders make popular pets because they are inquisitive
and playful, and because many think they are cute. However,
because they are exotic animals, sugar gliders need
specialized, complicated diets; healthy housing requires a cage
or space no less than the size of an aviary; it’s not uncommon
for them to lose control of their bowels while playing or
eating; and in some states and countries, it is illegal to own
sugar gliders as household pets.

Many of the animals on O’Reilly covers are endangered; all of
them are important to the world.

The cover illustration is by Karen Montgomery, based on a
black-and-white engraving from Johnson’s Natural History.
The series design is by Edie Freedman, Ellie Volckhausen, and
Karen Montgomery. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the

heading font is Adobe Myriad Condensed; and the code font is
Dalton Maag’s Ubuntu Mono.

	Learning PHP, MySQL & JavaScript
	Learning PHP, MySQL & JavaScript
	Dedication
	Preface
	Audience
	Assumptions This Book Makes
	Organization of This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Introduction to Dynamic Web Content
	HTTP and HTML: Berners-Lee’s Basics
	The Request/Response Procedure
	The Benefits of PHP, MySQL, JavaScript, CSS, and HTML
	MariaDB: The MySQL Clone
	Using PHP
	Using MySQL
	Using JavaScript
	Using CSS

	And Then There’s HTML5
	The Apache Web Server
	Node.js: An Alternative to Apache
	About Open Source
	Bringing It All Together
	Questions

	2. Setting Up a Development Server
	What Is a WAMP, MAMP, or LAMP?
	Installing AMPPS on Windows
	Testing the Installation
	Accessing the Document Root (Windows)
	Alternative WAMPs

	Installing AMPPS on macOS
	Installing a LAMP on Linux
	Working Remotely
	Logging In
	Transferring Files

	Using a Code Editor
	Questions

	3. Introduction to PHP
	Incorporating PHP Within HTML
	This Book’s Examples
	The Structure of PHP
	Using Comments
	Basic Syntax
	Variables
	Operators
	Variable Assignment
	Multiline Strings
	Variable Typing
	Constants
	Predefined Constants
	The Difference Between the echo and print Commands
	Functions
	Variable Scope

	Questions

	4. Expressions and Control Flow in PHP
	Expressions
	TRUE or FALSE?
	Literals and Variables

	Operators
	Operator Precedence
	Associativity
	Relational Operators

	Conditionals
	The if Statement
	The else Statement
	The elseif Statement
	The switch Statement
	The ? (or Ternary) Operator

	Looping
	while Loops
	do...while Loops
	for Loops
	Breaking Out of a Loop
	The continue Statement

	Implicit and Explicit Casting
	PHP Modularization
	Questions

	5. PHP Functions and Objects
	PHP Functions
	Defining a Function
	Returning a Value
	Returning an Array
	Returning Global Variables
	Recap of Variable Scope

	Including and Requiring Files
	The include Statement
	Using include_once
	Using require and require_once

	PHP Version Compatibility
	PHP Objects
	Terminology
	Declaring a Class
	Creating an Object
	Accessing Objects
	Cloning Objects
	Constructors
	Destructors
	Writing Methods
	Declaring Properties
	Static Methods
	Declaring Constants
	Property and Method Scope
	Static Properties
	Inheritance

	Questions

	6. PHP Arrays
	Basic Access
	Numerically Indexed Arrays
	Associative Arrays
	Assignment Using the array Keyword

	The foreach...as Loop
	Multidimensional Arrays
	Using Array Functions
	is_array
	count
	sort
	shuffle
	explode
	compact
	reset
	end

	Questions

	7. Practical PHP
	Using printf
	Precision Setting
	String Padding
	Using sprintf

	Date and Time Functions
	Date Constants
	Using checkdate

	File Handling
	Checking Whether a File Exists
	Creating a File
	Reading from Files
	Copying Files
	Moving a File
	Deleting a File
	Updating Files
	Locking Files for Multiple Accesses
	Reading an Entire File
	Uploading Files

	System Calls
	Questions

	8. Introduction to MySQL
	MySQL Basics
	Key Database Terms
	Accessing MySQL via the Command Line
	Starting the Command-Line Interface
	Using the Command-Line Interface
	MySQL Commands
	Data Types

	Indexes
	Creating an Index
	Querying a MySQL Database
	Joining Tables
	Using Logical Operators

	MySQL Functions
	Accessing MySQL via phpMyAdmin
	Questions

	9. Mastering MySQL
	Database Design
	Primary Keys: The Keys to Relational Databases
	Normalization
	First Normal Form
	Second Normal Form
	Third Normal Form
	When Not to Use Normalization

	Relationships
	One-to-One
	One-to-Many
	Many-to-Many
	Databases and Privacy

	Transactions
	Transaction Storage Engines
	Using START TRANSACTION
	Using COMMIT
	Using ROLLBACK

	Using EXPLAIN
	Backing Up and Restoring
	Using mysqldump
	Creating a Backup File
	Restoring from a Backup File
	Dumping Data in CSV Format
	Planning Your Backups

	Questions

	10. Accessing MySQL Using PHP
	Querying a MySQL Database with PHP
	The Process
	Creating a Login File
	Connecting to a MySQL Database
	Building and Executing a Query
	Fetching a Result
	Fetching a Row While Specifying the Style
	Closing a Connection

	A Practical Example
	The $_POST Array
	Deleting a Record
	Displaying the Form
	Querying the Database
	Running the Program

	Practical MySQL
	Creating a Table
	Describing a Table
	Dropping a Table
	Adding Data
	Retrieving Data
	Updating Data
	Deleting Data
	Using AUTO_INCREMENT
	Performing Additional Queries

	Preventing Hacking Attempts
	Steps You Can Take
	Using Placeholders
	Preventing JavaScript Injection into HTML

	Questions

	11. Form Handling
	Building Forms
	Retrieving Submitted Data
	Default Values
	Input Types
	Sanitizing Input

	An Example Program
	Questions

	12. Cookies, Sessions, and Authentication
	Using Cookies in PHP
	Setting a Cookie
	Accessing a Cookie
	Destroying a Cookie

	HTTP Authentication
	Storing Usernames and Passwords
	An Example Program

	Using Sessions
	Starting a Session
	Ending a Session
	Setting a Timeout
	Session Security

	Questions

	13. Exploring JavaScript
	Outputting the Results
	Using console.log
	Using alert
	Writing into Elements
	Using document.write

	JavaScript and HTML Text
	Using Scripts Within a Document Head
	Including JavaScript Files
	Debugging JavaScript Errors

	Using Comments
	Semicolons
	Variables
	String Variables
	Numeric Variables
	Arrays

	Operators
	Arithmetic Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Incrementing, Decrementing, and Shorthand Assignment
	String Concatenation
	Escape Characters

	Variable Typing
	Functions
	Global Variables
	Local Variables
	Using let
	Using const

	The Document Object Model
	Another Use for the $ Symbol
	Using the DOM

	Questions

	14. Expressions and Control Flow in JavaScript
	Expressions
	Literals and Variables
	Operators
	Operator Precedence
	Associativity
	Relational Operators

	Using onerror
	Using try...catch
	Conditionals
	The if Statement
	The else Statement
	The switch Statement
	The ? Operator

	Looping
	while Loops
	do...while Loops
	for Loops
	Breaking Out of a Loop
	The continue Statement

	Explicit Casting
	Questions

	15. JavaScript Functions, Objects, and Arrays
	JavaScript Functions
	Defining a Function
	Returning a Value
	Returning an Array

	JavaScript Objects
	Declaring a Class
	Creating an Instance
	Accessing Objects
	Static Methods and Properties
	The Legacy Objects Simulated with Functions

	JavaScript Arrays
	Arrays
	Associative Arrays
	Multidimensional Arrays
	Using Array Methods

	Anonymous Functions
	Arrow Functions
	Questions

	16. JavaScript and PHP Validation and Error Handling
	Validating User Input with JavaScript
	The validate.html Document (Part 1)
	The validate.html Document (Part 2)

	Regular Expressions
	Matching Through Metacharacters
	Wildcard Matching
	Grouping Through Parentheses
	Character Classes
	Indicating a Range
	Negation
	Some More Complicated Examples
	Summary of Metacharacters
	General Modifiers
	Using Regular Expressions in JavaScript
	Using Regular Expressions in PHP

	Redisplaying a Form After PHP Validation
	Questions

	17. Using Asynchronous Communication
	The Fetch API
	Your First Asynchronous Program
	The Server Half of the Asynchronous Process
	Cross-Origin Resource Sharing (CORS)
	Using GET Instead of POST
	Sending JSON Requests

	Using XMLHttpRequest
	Using Frameworks for Asynchronous Communication
	Questions

	18. Advanced CSS
	Attribute Selectors
	The ^= Operator
	The $= Operator
	The *= Operator

	The box-sizing Property
	CSS Backgrounds
	The background-clip Property
	The background-origin Property
	The background-size Property
	Using the auto Value
	Multiple Backgrounds

	CSS Borders
	The border-color Property
	The border-radius Property

	Box Shadows
	Element Overflow
	Multicolumn Layout
	Colors and Opacity
	HSL Colors
	HSLA Colors
	RGB Colors
	RGBA Colors
	The opacity Property

	Text Effects
	The text-shadow Property
	The text-overflow Property
	The word-wrap Property

	Web Fonts
	Google Web Fonts
	Transformations
	Transitions
	Properties to Transition
	Transition Duration
	Transition Delay
	Transition Timing
	Shorthand Syntax

	Flexbox
	Flex Items
	Flow Direction
	Justifying Content
	Aligning Items
	Aligning Content
	Resizing Items
	Flex Wrap
	Order
	Item Gaps

	CSS Grid
	Grid Container
	Grid Columns and Rows
	Grid Flow
	Placing Grid Items
	Grid Gaps
	Alignment

	Questions

	19. Accessing CSS from JavaScript
	Revisiting the getElementById Function
	The byId Function
	The style Function
	The by Function
	Including the Functions

	Accessing CSS Properties from JavaScript
	Some Common Properties
	Other Properties

	Inline JavaScript
	The this Keyword
	Attaching Events to Objects in a Script
	Attaching to Other Events

	Adding New Elements
	Removing Elements
	Alternatives to Adding and Removing Elements

	Time-based Events
	Using setTimeout
	Using setInterval
	Using Time-Based Events for Animation

	Questions

	20. Introduction to React
	What Is the Point of React Anyway?
	Accessing the React Files
	Including babel.js
	Our First React Project
	Using a Class Instead of a Function
	Pure and Impure Code: A Golden Rule
	Using Both a Class and a Function
	Props and Components
	The Differences Between Using a Class and a Function

	React State and Life Cycle
	Events in React
	Inline JSX Conditional Statements
	Using Lists and Keys
	Unique Keys
	Handling Forms
	Using Text Input
	Using textarea
	Using select

	React Native
	Questions

	21. Introduction to Node.js
	Installing Node.js on Windows
	Installing Node.js on macOS
	Installing Node.js on Linux
	Getting Started with Node.js
	Building a Functioning Web Server
	Working with Modules
	Built-in Modules
	Installing Modules with npm
	Accessing MySQL
	Further Information

	Questions

	22. Bringing It All Together
	Designing a Social Networking App
	Online Repository
	functions.php
	header.php
	setup.php
	index.php
	signup.php
	Checking for Username Availability
	Logging In

	checkuser.php
	login.php
	profile.php
	Adding the “About Me” Text
	Adding a Profile Image
	Processing the Image
	Displaying the Current Profile

	members.php
	Viewing a User’s Profile
	Adding and Dropping Friends
	Listing All Members

	friends.php
	messages.php
	logout.php
	styles.css
	javascript.js
	Questions

	A. Solutions to the Chapter Questions
	Chapter 1 Answers
	Chapter 2 Answers
	Chapter 3 Answers
	Chapter 4 Answers
	Chapter 5 Answers
	Chapter 6 Answers
	Chapter 7 Answers
	Chapter 8 Answers
	Chapter 9 Answers
	Chapter 10 Answers
	Chapter 11 Answers
	Chapter 12 Answers
	Chapter 13 Answers
	Chapter 14 Answers
	Chapter 15 Answers
	Chapter 16 Answers
	Chapter 17 Answers
	Chapter 18 Answers
	Chapter 19 Answers
	Chapter 20 Answers
	Chapter 21 Answers
	Chapter 22 Answers

	Index
	About the Author
	Colophon

